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Part 3: 
Quantum/Classical 
Hybrid Schemes
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How to handle very big systems ?… Well, let’s think before 
computing

• Not every atom in a large system generally needs a QM 
treatment, anyhow they are there in real life

• Let’s try to Identify a small portion of the large system that is 
interesting (localized) and that is tractable by QM/DFT

• Classical-Quantum interface: be careful about the interaction 
between the two worlds

• Define classical-like point charges suitable to couple with the 
nearby QM system and an electrostatic potential (ESP) a 
variational hamiltonian formulation 

• Dynamics of the QM and MM ensembles must preserve the 
constants of motion

Joining two worlds: Classical MD + First 
Principles MD = QM/MM
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• In the easiest (lucky) case, QM atoms interact with the MM
atoms via:
- H-bonds 
- Non-bonding interactions (e.g. Coulomb or van der  Waals)

QM and MM atoms are not chemically bonded. 

QM

MM

H2O
Cl-
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• In the case of QM atoms and MM atoms not chemically
bonded, selection of the QM/MM frontier does not pose
particular difficulties. But due to the weak interaction QM
atoms can escape from the QM box upon long dynamics
(watch out !)
Examples: (i) QM solute surrounded by MM water molecules, or ligand-
protein interacting via non-bonding forces, e.g. complex HIV-1 integrase
and its inhibitor S-1360

(see C. N. Alves et al. Bioorg. Med. Chem. 15, 3818 (2007))

H-bond
Non-bond



QM/MM system with chemical bonds at the border

Partitioning the system: shopping list

1.  chemical active part  treated by 
QM methods

2. large environment that is modeled
by a classical force field (MM)

3. Interface between QM and classical
parts

QM/MM

QM/Interface
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• In most of the cases, the QM/MM frontier passes 
across a (covalent) chemical

• Suitable termination of the boundary is required in 
order not to create artificial dangling bonds. 

• To this aim, the methods proposed in the literature 
can be classified into three groups:

1. Link atoms, 
2. Frontier orbitals 
3. Optimized effective pseudopotentials

8



1. Link atoms (L)

Link (L) atoms are additional monovalent hydrogen-like atoms
added to the QM subsystem to saturate the cut covalent bonds.
• L atoms are generally invisible to the MM atoms
• L atom should reproduce the local chemical environment

(e.g. sp3, sp2, etc.)
• They are preferentially placed far from each other to avoid

spurious interactions
(Singh and Kollman, J. Comp. Chem. 7, 718 (1986); Field et al. J. Comp.

Chem. 11, 700 (1990))
9



1. Link atoms (L) – continue

• Beside monovalent H-like L-atoms, F or CH3 (Adjusted
Connection Atom) can be used. Anes & Thiel, J. Phys. Chem. A
103, 9290 (1999)

• L-atoms, generally invisible to the MM atoms, interact via
the force field directly with the border QM atoms to ensure
that the QM-MM covalent bond are not affected by the
frontier passing across these chemical bonds.

• There are cases in which L-atoms must be kept into
account also from the MM side, e.g for C species in which
non-negligible polarization effects occur.

• Polarization of L-atom – C bonds could bias the results if L
atoms are neglected in the calculation of the MM
interactions. N. Reuter et al. J. Phys. Chem. A 104, 1720 (2000)
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2. Frontier Orbitals (FO)

The unsaturated covalent bond of a border QM atom is
compensated by an additional localized orbital yFO(x-RA)
treated as frozen during the calculation.
Note: the freezing of FOs can give problems in variational
approaches in which wavefunctions or the charge density are
used as dynamical variables.
(Assfel and Rivail, Chem. Phys. Lett. 263, 100 (1996); Gao et al. J. Phys.

Chem. A 102, 4714 (1990))
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2. Frontier Orbitals (FO) - continue

• Frozen FOs work well in self-consistent field optimization
• However, contributions to the forces can result in spurious 

components that can bias the dynamics
One of the most recent (and remarkable) applications is the 
study of H transfer by tunneling to the active site catalyzed 
by coenzyme B12-dependent methylmalonyl-CoA mutase. 
QM subsystem = 45 atoms, including the ligand and a 
portion of the methylmalonyl-CH2- substrate. 
FO = at the carbon atoms C2 of the b-mercaptoethylamine 
part of the CoA. 

Dybala-Defratyka, et al. Proc. Nat. Acad. Sci. USA 104, 10774(2007)
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General Warning about Link Atoms / 
Capping Atoms (and not only)

• L-atoms must not be too close to each other to avoid spurious 
link atom-link atom interactions. Remember that they carry a 
wavefunction ylink(x) that in a DFT-like scheme enters in the 
total electron density  (x) as

with all the related consequences on the Kohn-Sham Hamiltonian 
and potential. For instance the Coulomb interaction
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3. Optimized Effective Core Pseudopotentials (OECP)

Border PP written as a sum of a local and a non-Local part

r = x – RI, being RI the a capping atom at the QM/MM interface.
All the PP parameters are optimized by minimizing iteratively
the differences in electron density between the QM subsystem
and a full QM reference configuration including atoms beyond
the QM/MM boundary

(DiLabio et al. J. Chem. Phys. 116, 9578 (2002), von Lilienfeld et al. J.
Chem. Phys. 122, 014133 (2005))
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3. Optimized Effective Core Pseudopotentials (OECP) 
- continue

• Local part:

• Non-local part:

where pij(r) = const rl+2(h-1) exp(-0.5 r2/rl
2) and Ylm are the spherical

harmonics.
• All the parameters {r0, c1, c2, c3, c4, hlji, rl} are optimized by minimizing

iteratively the differences in electron density between the QM subsystem
and a full quantum reference configuration including atoms beyond the
QM/MM boundary.

15

 















































 

6

0
4

4

0
3

2

0
21

2//

0

2

2
erf)(

r
rc

r
rc

r
rcce

r
r

r
ZV orrIloc r





3

1,

* )()()ˆ()ˆ(),(
ji

liljilj

l

lm
lmlm

NL
l rphrpYYV rrrr



3. Optimized Effective Core Pseudopotentials (OECP) 
– continue

• We remark that the dimensionality of the parameter space is
determined by the maximum angular momentum in the non-
local part of the OECP.

• In practical applications (von Lilienfeld et al. 2005) it has
been shown that a maximum value l = s or, rarely, l = p is
enough to achieve a good optimization for oxygen in water
or carbon in acetic acid.

• OECPs are particularly suitable in the cases in which the
QM subsystem embedded in the MM environment is
characterized by the presence of highly ionic species.
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QM/MM Dangling bonds: influence on the local 
electronic structure (isosurface at 4 x 10-2 e/A3)

No H-capping H-Capping
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Splitting of the system into a QM inner 
region and  an outer MM region

• The two subsystems are in strong interaction with 
each other

• Hence the total energy (Hamiltonian) is not the 
simple (linear) sum of the energies of the two sub-
parts

• Coupling interaction must be accounted for
• Particular care must be taken at the boundary

especially if the border cuts through chemical 
bonds (more later)

18
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S = QM+MM

Additive scheme: Total Hamiltonian
  MMMMQMintQMtot ]}{,}{,[ HHHH IJ S RR
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Subtractive scheme (e.g. IMOMM/ONIOM)
(K. Morokuma et al. J. Comp. Chem. 16, 1170 (1995))

1. Compute HMM(S)
2. Compute HQM(QM) of the QM subsystem
3. Compute HMM(QM), i.e. MM calculation of the 

QM subsystem
4. Sum up terms 1 and 2 and subtract term 3 to get 

rid of the double counting
Htot(S) = HMM(S)+ HQM(QM)-HMM(QM)

Warning: The coupling between QM and MM is driven by 
MM and this can give problems in Coulomb interactions 
between QM and MM, especially if moving (MD).
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Typical form of the MM Hamiltonian:

  )(
2
1 MMMM

MM 2MMMMMM
I

I
II VMH RR  

Classical kinetic term 

Parameterized form of the electrostatic interactions, 
i.e. an analytical function of the positions only (not 
of the velocities) keeping into account many-body 
effects up to the third (bending modes) or fourth 
(torsion modes) order.
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• The choice of the QM subsystem is always somehow 
arbitrary, hence it must be carefully checked.

e.g. by extending the QM region from QM1 to QM2 (or by 
reducing from QM2 to QM1) do forces on the atoms change ?

QM1 FMM(RI) ≈ FQM(RI)        QM2 ??????

QM/MM selection and protocol

QM2QM1

RI
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Typical form of the MM potential (force field):
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Bond stretching

Bond bending

Torsion angles

Coulomb interaction

Van der Waals
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MM: what is a Force Field ? Which interactions ?

intermolecular
interactions

intramolecular
nonbonded
interactions

torsion

bond stretch

bending

20
2
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20
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Typical form of the QM-MM Hamiltonian:

Basically just the electrostatic interaction between the two 
subsystems, i.e.
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RI with 
charge qI

QM electron-MM atom
Particle-mesh interaction:
We need good charge models 
for the MM part and a lot of 
computation

QM atom-MM atom
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Total hamiltonian: scaling in a plane wave basis set

Pure QM interaction
Nel x NG x NG

with
yj(x) = SG cj(G) eiGx

QM/MM interface
MM x NG

Major cost = 
non-bonding
interactions*
MM x MM

  MMMMQMintQMtot ]}{,}{,[ HHHH IJ S RR

*Ewald summations (O(MM log MM)) or spherical cut-off techniques 
(O(MM)) can reduce the MM computational cost.
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Total Hamiltonian: scaling in a localized basis set

Pure QM interaction
Nel x Nbasis-set x Nbasis-set

QM/MM interface
MM x Nbasis-set

Major cost = 
non-bonding
interactions
MM x MM

  MMMMQMintQMtot ]}{,}{},[{ HHHH IJi S RRy
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e.g. in the case of 
Gaussian basis-set
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…and now the forces: CPMD as the QM driver 
- the inner part -

• Euler-Lagrange EOM for electrons, ions & Co. inside the QM 
region + interaction with MM region

+ ????

+ ????



New force components ?
• QM atoms interact in the usual DFT-based 

way inside the QM box and also with the 
outer MM atoms (warning: No periodic 
boundary conditions here !)

• Electrons interact in the usual DFT-based 
way (Kohn-Sham potential) but also with 
the outer MM electrostatic charges (again, 
no PBC allowed here)

29
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MM interaction: forces on atoms

    ????}{},{  I
MM

II
MM VqH

I
RR R

Remember that computing this gradient means evaluating the 
derivatives with respect to each atom position RI of all the  five 
components of V MM (TOPOLOGY)
• stretching
• bending
• torsion
• Coulomb electrostatics
• van der Waals – Lennard-Jones
• + contribution from the QM atoms !

Forces acting on the MM atoms:



TOPOLOGY ?
Any force field (of course) does not do any electronic strucrure
calculations. So giving the coordinates (x,y,z) as in standard
CPMD is insufficient. We must tell the code also which chemical
species and which type of bond we want.

Suppose that we have an atom at (x,y,z). The numbers x,y,z are
listed in COORDINATES. Now we want this atom to be C and
we want it in sp3 configuration. Evidently a force field for sp3 is 
an analytical function different from the one for sp2. 

This information is given in the file called TOPOLOGY.
  ),,(,,

23

zrVrV spsp  
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QM/MM electrostatic interaction (1): atoms
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where MM = number of classical atoms, QM = number of 
quantum atoms, qI = MM charge, ZJ = QM charge. We have 
then two forces components:

From MM to QM

From QM to MM
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QM/MM electrostatic interaction (2): electrons
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Functional form (MM = number of classical atoms):

Potential acting on the QM wave functions yi(x):

Forces acting on the MM charged atoms:
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Expensive if
MM is large
and/or QM is 
too accurate !



Equations of motion: what we have in the code(s) 
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A possible way to reduce the QMxMM computational cost:

Divide the world in 3 domains
1) Close to the QM region (r < r1)
2) Not too far, i.e. ESP region 

(r1 < r < r2)
3)  Far MM world (r > r2)

Generally we test 
 21 rr

as a check, however in
all the known cases it is

r1 ~ 10-12 a.u. 
r2 ~ 20-25 a.u.

Only NN < MM
atoms in this shell

A. Laio et al. J. Chem. Phys. 116, 6941 (2002) 
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The 3-regions scheme
Region 1: NN = subset of classical MM atoms inside this region

Region 2: Classical-RESP charges interaction:

Region 3: Multipolar expansion on MM charges:
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D-RESP: Dynamical – Restrained 
ElectroStatic Potential derived charges

• Define atomic point charges by fitting their value to the 
electrostatic potential (ESP) due to the QM charge density
seen by the close MM atoms

• A restrain penalty function (RESP) is included, since 
unphysical charge fluctuations have been observed in
unrestrained ESP charges during dynamics. Namely,
we minimize the norm
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D-RESP: 
qI

D are the dynamical RESP charges

 2
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is minimized on the fly during the dynamics.
wq = weight parameter to reduce charge fluctuations

 JJ uxdV rxx   )(3 

Where u(|r - rJ|) is a Coulomb potential modified at short
range to avoid spurious over-polarization effects

25.010.0 qw
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D-RESP: the Hirshfeld charges

 



QMJ

H
J

D
Jq qqwIn the restrain term

qI
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where at is the atomic (pseudo) valence charge density and

   J
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is the bare valence charge of the I-th atom
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D-RESP: the minimization of  is a least-square 
procedure
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D-RESP: the least-square minimization with 
respect to qI

D reads 
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The RESP coupling potential
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The additional coupling potential on the electrons is then

This replaces the more expensive
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An example of hybrid QM/MM-MD: 
RNA enzymes =Ribozymes

1) Biological function
Contribution to transfer of genetic information 
from DNA to protein

2) Evolution of organisms
primordial organism present organism
(in the RNA world) (in the RNP world)

gene RNA DNA
enzyme RNA protein

3) Medical application
Inhibition of expression of genes, such as oncogene
(cancer gene therapy)
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An example of 3D structure of riboyzme: 
hammerhead ribozyme

(molecular) scissors = 
(catalytic) reaction
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QM
r < r1

D-RESP
r1 < r < r2

The interacting QM/MM
part of the system

Hammerhead ribozyme
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QMMM dynamical
simulation in the
absence of OH-
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QMMM dynamical
simulation in the
presence of OH-
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Mg2+
1-Mg2+

2 distance during the simulation

No OH-

with OH-


