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Part 2: 
First Principles Molecular 

Dynamics
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First Principles MD:
instead of looking for a potential V(RI), we try to include 

quantum electrons and classical nuclei and to compute forces
from fundamental quantum mechanics

electron-
electron

ion-ion

electron
- ion

electron
- ion

yi(x)

RI

Beside the atom-atom 
(ion-ion) interaction, 
new ingredients must 
be included
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These electronic orbitals are what we want to describe. 
So what can we do with our Hamiltonian ?

     positionnuclearVVĤ IIeIee  RRxx2

2
1

In principle, we have simply to solve the Schrödinger equation

iii EH yy ˆ

But in case of many electrons the many body interaction Vee is 
very complicated and the calculation of the many-body yi not 
possible even with the most powerful computer… 
so we need some tricks…(and some mathematics)
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The Born-Oppenheimer method - I

The Born-Oppenheimer approximation (M. Born and J. R. 
Oppenheimer, Ann. der Physik, 4 Folge, 1927) assumes that 
• Nuclei are much heavier than electrons, so that their kinetic 
energy can be neglected in computing the electronic structure,

• The true many-body wavefunction Y(x,RI) can be written as 
a product of separate wavefunctions

• The same electronic state (ground state) is unaffected by 
small changes in the nuclear positions RI (adiabatic theorem)
• So the time-independent Schrödinger equation holds.
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The Born-Oppenheimer method - II
Practical applications of the BO method have been historically 
successful in the so-called Hartree-Fock approach. 
1) The electron many-body wavefunction (q) is too complicated. 

q = (x1s, x2s, … , xNs ) is a multi-dimensional vector defining 
position and spin state s of each electron in the system. 

2) Then, one has to solve the associated Schrödinger equation

3) …and it is assumed that (q) is an antisymmetric combination 
of single-particle orbitals yis(x) (Slater determinant)
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The Born-Oppenheimer method - III

The many-body Schrödinger equation, written in terms of single-
particle orbitals
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Where the first part in { } includes:
• the electron kinetic term
• the Hartree (Coulomb) potential
• the electron-ion interaction

The integral part, instead has no classical analog and represents 
the quantum exchange interaction.
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The Born-Oppenheimer method - IV

Orbitals yis(x) are generally expressed as linear combinations of 
known analytic functions
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and in practical applications, a very popular, but somehow minimal, 
basis set is represented by Slater-type orbitals (STO)
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The Born-Oppenheimer method - V

1) Compute the electronic structure as usual: 

  0ˆdetˆ  ijijiiii EHEH yyyy
this implies a computationally (very) expensive diagonalization

2) Move the ions according to their equations of motion

I
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in the velocity Verlet scheme.
3) Re-orthogonalize the wavefunctions after moving the

atoms
ijji yy  …and go back to 1)
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The Born-Oppenheimer method - VI

Computing the electronic structure 

  0ˆdetˆ  ijijiiii EHEH yyyy

implies a computationally procedure of the steepest descent (SD), 
preconditioned conjugate gradient (PCG), diagonalization in 
iterative subspace (DIIS), etc.. All these methods can be regarded 
as solving the wavefunctions updating algorithm

i.e. 1st order differential equations
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Hellmann-Feynman forces: How to compute fI
Hellmann, H. (1937) “Einfürung in die Quantenchemie”, Deuticke, Vienna

R. P. Feynman, Phys. Rev. 56, 340 (1939)

To Compute the forces on the atoms one should compute 
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However, an important simplification can be used if:

1) 

2)

iii EH yy ˆ
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Hellmann-Feynman forces: How to compute fI
Hellmann, H. (1937) “Einfürung in die Quantenchemie”, Deuticke, Vienna

R. P. Feynman, Phys. Rev. 56, 340 (1939)
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namely, the derivative of the operator is identical to 
the derivative of the corresponding eigenvalue
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Interlude: (before going on) 
Function vs. Functional

Function :                                    Functional:
A number (y) that depends             A number (F) that depends
on a number (x)                               on a function (f(x))


b

a
dxxfFxfy )()(

Example: y = xn Example: an integral over
(a line n=1, parabola n=2              a fixed interval (a,b).
etc…). y changes if  x F changes if f(x) changes
changes
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Variational (functional) derivative: an euristic 
(practical) point of view

Consider a simple example known to everybody in physics: 
the scalar product of two vectors 
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The scalar product F is simply a number that depends on the 
two (set of) numbers ai and bi.
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We want now to compute the derivative of the scalar product
F with respect  to bj, the j-th component of |b>
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The derivative simply selects the j-th component of |a> and kills
the sum operation. 
We do now something that physicists always do without telling 
to mathematicians.

Variational (functional) derivative: an euristic 
(practical) point of view
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We consider formally similar a discrete and a
continuous index

Discrete:                                                Continuous:


i  dx

ii ba )()( xbxa

jbd
d

)(yb

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A simple example of functional: the integral

In a way similar to the scalar product of two vectors, a functional
is a number that depends on one or more functions (not numbers):
e.g. the product a(x) b(x)

   dxxbxabaF )()(,

And the derivative with respect to b(y) reads:
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…and now we are equipped for the next steps:
Density Functional Theory and Car-Parrinello method.
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Density Functional Theory: brief review
• Define the electronic density r (x) as a superposition of 

single particle Kohn-Sham (KS) orbitals

• Write the total energy functional as
E[yi,RI] = Ek + EH + Exc + Eps + EM

i.e. sum of the interactions electron-electron
+ electron-ion + ion-ion

after W. Kohn* and L. J. Sham, Phys. Rev. 140, A1133 (1965)
*Nobel Prize for Chemistry in 1998 
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Density Functional Theory: brief review
• Electron-electron interaction:

• Ek = kinetic energy, EH = Coulomb interaction,
Exc = exchange-correlation interaction (= what we do  

not know: The many-body interaction)
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Density Functional Theory: brief review

• Electron-ion interaction:

the core-valence interaction is described by 
pseudopotentials

• Ion-ion interaction:
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The Exchange-Correlation problem: a few points

• The exchange interaction and the electron correlations 
are due to many-body effects and represented by the 
term Exc[r]

• The exact analytical expression is unfortunately 
unknown

• It is often assumed that exchange and correlation 
contributions can be computed separately and then 
linearly added as

     rrr cxxc EEE 
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• Approximate analytical expressions are generally derived 
from the homogeneous electron gas limit, for the exchange
interaction (Becke, 1988) 

• So, the exchange part of the functional, can be written in the 
so-called local density approximation (LDA) as

This is the simplest possible form and the name comes from the 
fact that r is given by the local density r (x) at a specific point x. 
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• Similarly, the LDA version of the correlation energy, originally 
proposed by Kohn and Sham (1965) and refined by Perdew
and Zunger (1981), reads

where the explicit analytic form of the function c(r (x)) comes    
from a parameterization from random phase approximation. 

• Due to the insufficiency of a simple LDA approximation in the 
treatment of many real systems, approximations including the 
gradient of the density, r (x) are often adopted and the 
exchange-correlation functional becomes

    ))(()(3 xx rrr cc xdE

    ))(),((, 3 xx rrrr xcxc xdE



Why gradient correction/approximation ?

• It is the first derivative of the density w.r.t. x

• However it is not a Taylor expansion, not a 
perturbation expansion, not an analytical 
continuation, not etc….

• It is just an empirical way to include something
beyond x-locality based on a (more or less) physical 
meaning

24
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 In practical applications, however, the gradient enters 
only with its modulus thus adding only a modest 
computational cost 

 These generalized gradient corrections (GGA) are a bit 
arbitrary, i.e. they are not a perturbation expansion

 Accuracy is assessed a posteriori by test calculations and 
comparisons with both exact results and experiments.

 Exchange: Becke (1988) still regarded as a standard. 
Subsequently refined and improved by the same author 
(Becke 1992, Becke 1993) 

 Correlation: From several research groups, sometimes 
including also the exchange (Perdew 1986, Perdew and 
Wang 1992, Perdew et al. 1992, Perdew et al. 1996, 
Vosko et al. 1980, Lee et al 1988, Hamprecht et al. 1998, 
Handy and Cohen 2002, Xu and Goddard III 2004). 

)(xr



Example of GGA on the exchange (after Becke):
• The lowest order GGA on the exchange is determined only 

by dimensional analysis (i.e it is not an analytical expansion)

• Problem: asymptotical divergence in atoms and molecules
• Workaround: A. D. Becke, Phys. Rev. B 38, 3098 (1988)

where

and b (=0.0042) is fixed by a least-square fit procedure on a set 
of training atoms / molecules.
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Example of GGA on the correlation (after Perdew et al.):
• As in the case of the exchange correlation is written as a 

linear combination of density and gradient dependent 
addends

where rs is the Wigner-Seitz radius
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Example of GGA on the correlation (after Perdew et al.):
 c

GC has to satisfy three conditions:
1) Slow varying limit (t 0). For                     (high density)

2) Rapid varying limit (          )            (low density = no corr.)

3) Uniform scaling to high density
(i)
(ii)
(iii)
then Ec

GGA = constant

28

)()(;0 3 xx rr  sr

0sr

t

066725.023

0

2

 bb t
a
eGC

c

LDA
c

GC
c  

)(as0 1 Ors

)(as 2/1 Ot



Example of GGA on the correlation (after Perdew et al.):

 c
GC becomes then the PBE expression after Phys. Rev. Lett. 

77, 3865 (1996)

where

In general: A series of plausible hypotheses and a lot of algebra
…and good luck !
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Small warning about GGAs: 

So far it seems that GGA exchange correlation functionals are 
just linear combinations of density and gradient dependent 
functionals, i.e. 

Well it is almost true but not always ! Counter-example: HCTH*

densities and gradients are mixed together and the coefficients cj
are computed by self-consistent least-squares procedure on a 
“training set” of atoms and molecules…
*J. Chem. Phys. 109, 6264 (1998)
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A simple example of GGA effect: Magnetite

Spinel fcc structure carrying octahedral and tetrahedral Fe

(relative) total energy as 
a function of the volume
Vexp = experiment

© M. Friak, A. Schindlmayr, M. Scheffler, New J. Phys. 9, 5 (2007)
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GGA effects on bond lengths
©B.G. Johnson, P.M.W. Gill, J.A. Pople, J. Chem. Phys. 98, 5612 (1993)

S-null = Slater exchange, B-null = Becke exchange
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GGA effects on vibrational frequencies
©B.G. Johnson, P.M.W. Gill, J.A. Pople, J. Chem. Phys. 98, 5612 (1993)
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GGA effects on dipole moment
©B.G. Johnson, P.M.W. Gill, J.A. Pople, J. Chem. Phys. 98, 5612 (1993)
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GGA effects on dissociation energies
©B.G. Johnson, P.M.W. Gill, J.A. Pople, J. Chem. Phys. 98, 5612 (1993)
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A few warnings:

• The explicit form adopted to describe the exchange and 
correlation interactions represents a delicate step in the set-
up of the simulation and must be carefully tested and 
benchmarked (see e.g. Acc. Chem. Res. 39, 151 (2006) for 
an instructive example… OH- in water). 

• Keep in mind that no one of the present versions of Exc
includes van der Waals interactions. In the cases in which 
they are dominant, special corrections ad hoc must be 
included (Langreth et al. 2005, Grimme 2006, Schwabe
and Grimme 2007, Silvestrelli 2008)

• They are not entirely (or not at all) self-consistent with the 
DFT formulation.



The hybrid exchange-correlation functional B3LYP is a linear 
combination of the Hartree-Fock exact exchange functional Ex

HF

with the GGA exchange-correlation gradient-corrected  
(GGA=PBE, BLYP, HCTH, etc…) energy Exc as provided by DFT.

where a0= 0.20, a1= 0.72 and a2 = 0.81 are empirical parameters 
determined by fitting the computed values of atomization energies, 
ionization potentials, proton affinities, and total atomic energies to 
experiments and higher level quantum chemical calculations (CI, 
Coupled Cluster, multi-determinant methods,…) for a set of 
training molecules.
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Example of Hybrid Functional (1): B3LYP
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Also the hybrid functionals HSE and PBE0 rely on calculation of the exact 
Hartree-Fock exchange functional at least at short range Ex

HF,SR. More precisely, 
the Coulomb potential is split into a short (SR) and a long range (LR) part as

SR LR
The mostly used HSE0 functional assumes (empirically) w=0.2 and a mixing 
coefficient a = 0.25 

And the PBE0 is the limit w = 0

Namely only the exchange term is affected, not the correlation

        PBE
c

LR,PBE
x

SR,PBE
x

SR,HF
x

HSE
xc EEEaaEE www 1

Example of Hybrid Functional (2): HSE & PBE0
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being R the atomic site position. With k = 0 (G point):

Wannier functions technique: a useful tool
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Define, after G. H. Wannier, Phys. Rev. 52, 191 (1937)
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using the initial condition wi
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KS(x) for the iterative
solution at step p = 0
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WFC iterative scheme: 
Minimize the spread of

Step p = 1: construct the matrix X(1) (analogously Y(1) and Z(1)) as

Step p = 0 : using the initial condition wi
(0)(x)=yi

KS(x) write
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Wannier Function Center Current density

and are given by a unitary transformation of the KS orbitals
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The Wannier functions, in practice, minimize the spread
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a = x,y,z Ga=2p/L

the center of mass of a Wannier orbital is a useful quantity
to characterize a system 
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WFCs technique in a nutshell:

• Unitary transform the KS orbitals as

wn(x)=Pp exp(-A(p))yKS
n(x)

• The coordinate xn of the nth WFC reads
xn= -(L/2p)Im log <wn|exp(-i2px/L)|wn>
and similar definition for yn and zn. Hence

rn = (xn , yn , zn )
• The dipole moment P of the system reads 

P = Pion + Pe = SIZIRI – Sn fnrn

42



Wannier functions and WFC for a water molecule

 
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dipole moment from WFCs:
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General expressions for vdW interaction: 
Adding to DFT what is missing

• In (e.g.) a Grimme’s scheme (D2) the vdW interaction is 
written as

• s6 depends on the functional (training set fit)
• Very good approximation in many cases…
• …but it looks like an analytical restrain on the atomic 

coordinates (only) preventing the system to actually reach its 
own ground electronic state (whether correct or incorrect)
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vdW interaction from first principles: 
One possible way

• Use the maximally localized Wannier functions scheme

• From the WFCs positions rn and spread Sn define:
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vdW interaction from first principles

• From the auxiliary analytical Wannier functions
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(Not the only) possible vdW alternative 
first-principles scheme

• vdW interaction written as usual

• Results are almost independent on  (~20)
• Rs = RvdW + R’vdW , sum of the VdW radii of the MLWFs, 

which determined as the radii of the 0.01 electron density

…from
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How to use this vdWC scheme
• Method 1: Self-consistent time consuming but “exact”

re-loop at each t

• Method 2: compute vdWC non self-consistently at each t

• Method 3: if |RI(t’>t) – RI(t)| > tolerance, compute vdWC as 
above. Otherwise use the old Cnl

6 and extrapolate WCs 
according to the movement of RI(t’>t)

  WC
vdW

m,DFTm,DFT
i

i
nni

m,DFT EEEUwE  1min yy

  WC
vdW

DFTDFT
i

i
nnit

DFT EEEUwE  yymin

Futher numerical details in T. Ikeda & M.B. J. Chem. Phys. 143, 194510 (2015) 
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Do we really need all the electrons of every atom to 
describe a chemical bond ? 

The core part in 
general does not 
contribute to the 
formation of 
chemical bonds 
(inert)

…so we replace the (expensive)
Vall-e(r) with a pseudopotential
Vps(r) that does not have the
core states but reproduces
correctly the valence electrons
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This crucial observation led to pseudopotentials:
core electrons are eliminated   

a potential describing the core-valence interaction is built by fitting 
to the all-electron solutions of the Schrödinger or Dirac equation

D. R. Hamann, M. Schluter, C. Chang, C. Phys. Rev. Lett. 43, 1494 (1979) 

     )(3 xRx rr IpseI VxdE

The elimination of the core electron from the calculation 
allows one to get rid of the short length scale problem



Pseudopotential (PP): general scheme to get one
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PP generation is a three-step process:

1) In the first step one solves a Schrödinger-like / Dirac-like 
spherical equation for the all-electron (AE) system, 
computing eigenvalues nlm and eigenfunctions ynlm(r)

2) In the second step one fits potentials /valence wavefunctions 
of the same atom without core electrons to this one. 
Generally, these potentials / wavefunctions angular-
momentum dependent must match the  AE ones beyond a 
given radius rc.

3) In the third step (“closer to cooking than to science” © P. 
Giannozzi, 1998) one must test what she/he has generated 
from the former steps to see if it makes sense.



Pseudopotential generation checklist:
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1) Select the DFT level (GGA / LDA) you need / wish
2) Select valence and core states
3) Select a reference electron configuration (occupation)
4) Generate the AE wavefunctions
5) Select the matching radii rc (and core corrections if needed)
6) Generate the PP
7) Check if it works in your molecule / liquid / solid, i.e. on 

atomic configurations differing from the starting one (this is 
what people call “transferability”)

8) Check the required basis-set convergence (cut-off in PW)
9) Check its separable form

Warning: Do not even think to do any of the above if you do not have experience
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Separable form ? What ?

The computational cost can be further reduced, provided that a 
separable form is chosen for the pseudopotential (PP)

L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

• r = x – RI
• Vloc(r) depends only on the position r
• A non-local (NL) part depends on angular momenta l,m. 
• The functions lm(r)= fl(r)Ylm(W) are eigenfunctions of the 
atomic Hamiltonian in which the core-valence interaction has 
been replaced by the PP


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lm
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NLlmlocps VVV
,

* )()()()( rrrr 



54

Norm-conserving pseudopotentials:
1) The PP (radial) wavefunction PP(r) is nodeless 
2) The PP (radial) wavefunction matches the all-electron one 
AE(r) only beyond a certain distance r0 from the nucleus (cut-off 
radius)

3) the square norm of the wavefunction is preserved in the 
pseudopotential construction 


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Difference between true Coulomb potential 
and pseudopotential

Difference between true wavefunction
and pseudo-wavefunction



Choosing valence and core states:

56

This seems to be trivial, and often it is: Valence states contribute 
to bonding, core states do not. But….

© P. Giannozzi, 1998
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Atomic calculations:
1) Non-relativistic case: The Kohn-Sham (Schrödinger-like) 
equation in spherical coordinates has to be solved

providing the AE solution

Your LDA/GGA choice 
here !
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Atomic calculations:
2) Fully relativistic case: The Kohn-Sham (Dirac-like) equation 
in spherical coordinates has to be solved for large components 
Rnlj(r) and small ones Snlj(r)

where j = ½ (l = 0) or j = l+1/2; l-1/2 (otherwise) and k is the 
Dirac quantum number k = -1 if l = 0, and k = -l-1, l otherwise.
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Atomic calculations:
3) Scalar relativistic case: The Kohn-Sham (Dirac-like) equation 
in spherical coordinates is solved only for the large components 
Rnlj(r) and averages over the spin-orbit component, thus reading 

where  = 1/137.036 is the fine structure constant and <k > = -1 
is the degeneracy-weighted Dirac quantum number, whereas



60

A practical (milestone) example: Analytic form of a 
Bachelet-Hamann-Schlüter (BHS) PP
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A simple comparison of AE vs. PP calculation: CH2

a,b = done by somebody else                  (PW cut-off = 40 Ry, 60 Ry, 80 Ry)

© M.B. and W. Andreoni, Chem. Phys. Lett. 265, 24 (1997)
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Most popular norm-conserving pseudopotentials:
- G. B. Bachelet, D. R. Hamann, M. Schluter, Phys. Rev. B 26, 4199 (1982) 
- X. Gonze, R. Stumpf, M. Scheffler, M. Phys. Rev. B 44, 8503 (1991) 
- N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991) 
- S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996) 

Alternatives:
1) The norm-conservation can be released leading to ultra-soft pseudopotentials. 
But, an augmented charge has to be added in order to restore the total charge 
density as obtained upon integration of the square modulus wavefunction. 
(D. Vanderbilt Phys. Rev. B 41, 7892(1990))
2) The inner electron wavefunctions are considered as frozen orbitals and 
described with appropriate angular momentum projectors (PAW) 
(P. E. Blöchl Phys. Rev. B 50, 17953 (1994)).
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Chemical bonds: the atomic orbitals yi(x) are modified as 
a consequence of the interactions of the valence electrons 

of the atoms involved

Eaxmple：H2O

H         H
O

…or the s + p
leading to the 
sp-hybridization
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HOMO-3
-25.50 eV

HOMO-2
-13.21 eV

HOMO-1
-9.38 eV

HOMO
-7.26 eV

H2O: electronic (KS) states

LUMO
-1.00 eV

LUMO+1
+0.50 eV

LUMO+2
+1.10 eV

O-H = 0.966 A
HOH = 104.3o



Just a warning:
LDA vs LSD

(2S+1)=2
doublet

e 2N+1

e 2N

e 2N-1

eup
N+1

eup
N

eup
N-1

edown
N

edown
N-1

• If no up-down levels splitting occurs, then 
Etot[LDA]=Etot[LSD]

• If the ground state of the system includes an energy-levels splitting 
between an up-spin level and the corresponding down-spin one, then

Etot[LDA]>Etot[LSD]
• …then LDA is unable to converge to the proper ground state because 

of the spin restriction
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Quantum Electrons in Molecular Dynamics

In 1985, Roberto Car (Princeton University) and Michele 
Parrinello (Swiss Federal Institute of Technology) proposed to 
use the fundamental quantum mechanics to write V(RI) in an 
ab initio way

      i

K

i
IiIiI HEV yyy 


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1

,, RxRR


So no model potentials (analytic ad hoc functions) are needed 
and electronic structure modifications can be directly described 
by QM …
…but how to compute at the same time the electronic structure 
and the dynamic displacement of the atoms ?
R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)
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Car-Parrinello Molecular Dynamics
• Instead of using the “brute” force way, we can generalize the 

classical MD lagrangean by adding the electronic degrees of 
freedom yi 

• a constraint for keeping the orthogonality of the wavefunctions
• and any external additional variables aq (e.g. thermostats, stress, 

etc.)
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Car-Parrinello Molecular Dynamics
• Solve the related Euler-Lagrange EOM
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• Solve the 2nd order differential 
equations Euler-Lagrange EOM

Temperature, pressure, etc.
69

Car-Parrinello Molecular Dynamics - III



Car-Parrinello Molecular Dynamics
• Instead of using the “brute” force way, we can generalize the classical MD 

Lagrangean by adding the electronic degrees of freedom yi 

Michele Parrinello     Roberto Car
ETH-Zurich               Princeton Univ.
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Car-Parrinello Molecular Dynamics
• Let us observe that it is straightforward to give a 

Hamiltonian, instead of a Lagrangean, with a simple 
Legendre transform after defining the momenta
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Car-Parrinello Molecular Dynamics
• so that the Hamiltonian reads
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and the CPMD equations of motion will be given by the 
corresponding Hamilton equations for each set of variables 
and momenta.
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BO surface

CP trajectory

BO trajectory
The difference between the CP trajectories RI

CP(t) and the 
Born-Oppenheimer (BO) ones RI

BO(t) is bound by

| RI
CP(t) - RI

BO(t)| < C 1/2              (C > 0) 

if   020   HOMOLUMO

F.A. Bornemann and C. Schütte, Numerische Mathematik 78, N. 3, p. 359-376 (1998)
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Practical implementation
• To implement the CP-EOM numerically, the KS orbitals are 

generally expanded in plane waves

yi(x) = SG ci(G) eiGx

• G are the reciprocal space vectors. The Hilbert space spanned 
by PWs is truncated to a suitable cut-off Ecut such that 

G2/2 < Ecut

• PWs have so far been the most successful basis set, in particular 
for extended systems requiring periodic boundary conditions

• The basis set accuracy can be systematically improved in a fully 
variational way

• PWs are independent from atomic positions (no Pulay forces)
• However they are not localized and can be inefficient, e.g., for 

small molecules or clusters in a large simulation cell 
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R space    a G space

E2
cut > E1

cut

Plane wave expansion: yi(x) = SG ci(G) eiGx

For each electron i=1,…,N , G=1,…,M are the reciprocal space 
vectors. The Hilbert space spanned by PWs is truncated to a 
cut-off Gcut

2/2 < Ecut

E1
cut
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Practical implementation

• Verlet’s algorithm on EOM gives
(m/Dt2) ・[ |i(t+t)> + |i(t-t)> - 2 |i(t)>] = -(H CP+L) |i(t)> 
or, in G-space,

• The ionic degrees of freedom RI(t) are updated at a rate (speed) 
Dt while the electronic degrees of freedom |(t)> are updated at a 
rate Dt/m1/2 (Dt ~ 5 a.u., m ~ 500 a.u.), hence they are much 
slower (adiabatic) with respect to the ions.

• The parameter that controls the adiabaticity (BO) is m
• However this Dt is driven by QM and is much shorter than  t in 

classical MD

   
  j

jiji
CP
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Practical implementation
• To achieve computational efficiency, pseudopotentials are 

written in the Kleinmann-Bylander separable form
V ps(x,x’) = V loc(x) (x-x’)

+ Slm  lm(x)Vlm *lm(x’)
being V loc the local part and Vlm the non-local VNL angular 
momentum dependent part.

• Core electrons, as we have seen before, are not taken into 
account explicitly…

• …unless partial core corrections or semicore states are needed 
(e.g. core polarization effects)
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G space                         R space
ci(G) yi(x)

SG ci(G) G2 {Ek}
VNL(G) {ENL}
r(G)

N*FFT

FFT r (x)

Vloc (G) + VH(G)  {Eloc+EH}
= VLH(G) 

Vxc(x)   {Exc}
+ VLH(x)
= VLOC(x);
VLOC(x)yi(x)

FFT

N*FFT
VLOC(G)ci(G)

+ VNL(G) + SG ci(G) G2
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Practical implementation: orthogonalization (i)

To keep the wavefunction orthogonal to each other during the 
dynamics, the Lagrange multipliers L = [ij] are computed in
an iterative self-consistent way.

1) first propagate the wavefunction in an unconstrained way

        tHtttttt iiii y


yyy 

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2~

2) correct the updated wavefunction with the constraint

     
j

iijii txtttt yyy ~

where xij = (t2/) ij
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Practical implementation: orthogonalization (ii)

3) This gives us an equation for the Lagrange multipliers

AXBXBXX   1
where

4) Note that A = 1 + O(t2) and B = 1 + O(t). We can then
solve iteratively

)(~)(,)(~)(~ tttBttttA jiijjiij  yyyy
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2
1   nnnn XXB1B1XA1X

with the initial condition  A1X 
2
1)0(

Generally 2-6 iterations are necessary between two subsequent 
simulation steps if  t ~ 5-6 a.u. or less



Practical implementation
• G=1,…,M (loop on reciprocal vectors) distributed in a parallel 

processing in bunches of M/(nproc) or via MPI or hybrid 
MPI+OMP

• i =1,…,N (loop on electrons) distributed (MPI / OMP)
• k = 1,…,Nkpt (loop on k-points) distributed (MPI / OMP)
• I = 1,…,NAtoms (loop on atoms) distributed (MPI / OMP), 

particularly useful in QM/MM simulations where MM ~ O(N)
• The scaling of the algorithm is O(NM)for the kinetic term,

O(NM logM) for the local potential and O(N2M) for the
non-local term and orthogonalization procedure (all other 
quantum chemical methods scale as O(MN3) M=basis set)
(see e.g. http://www.cpmd.org)
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General scheme of a computer code for First Principles MD:

Provide initial atomic coordinates RI(t) and wavefunctions yi(x) 
and select t

Compute forces: fI = - ∂E(yi ,RI)/∂RI

Move atoms:

and update with wavefunctions yi
t(x) → yi

t+t(x) 
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M
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I
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Move time forward: t → t + t
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Car-Parrinello & Born-Oppenheimer MD 
their respective (dis)advantages - I

CPMD BO
Conservation of constants of motion Good Convergence 

dependent
Electronic optimization Not needed Needed
Hamiltonian diagonalization Not needed Needed
Integration step Small Large
Minimum of the BO surface Approximate Exact

• CP-like i propagation                     Stability
• Large t with no SCF cycle             Efficiency
• Dynamics ~ true BO                         Accuracy
• BO deviation under control             Min. Error
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Car-Parrinello & Born-Oppenheimer MD 
their respective (dis)advantages - II

BO:
• Diagonalization / minimization of EDFT are required in BO
• Hellman-Feynman forces are just one component, Pulay forces 

exist if local basis set are used
• Residual forces components appear unless strong convergence 

criteria are imposed. r = r  rBO

CP:
• Only Hellman-Feynman forces (at least in PWs)
• No residual SCF forces because of the fully Lagrangean 

(variational) equations of motion

BO
HBO
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xcextra
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Na+

Cl-

• What are the effects of the presence of ions ?
• Do they have a detectable influence ?
• What can we learn ?

Example 1: Salts in water
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Hydration-dehydration 
processes are the basis of 
(e.g.) potassium channel in 
intermembrane proteins and 
pores

Why should we care ?
Hydration properties of monovalent and divalent metal 
cations are a key issue in the understanding of several 
chemical and biochemical processes, such as, for instance, 
ion channels



Computational Details:
• Car Parrinello MD with BLYP and Troullier Martins pseudopotentials

• Basis set: PWs; 70 Ry for pure water; 
80 Ry for NaCl + H2O (semicore states
included for Na)

•  = 340.0 a.u.   Dt = 4.0 au
T = 300 K using Nosé-Hoover Thermostat

• NaCl: 126 water molecules + 1 Na+ and 1 Cl-

cubic cell with PBC
(same concentration used in experiments and present in extracellular 
environments)

• IR spectrum obtained via Fourier transform of the dipole-dipole 
autocorrelation function

• Molecular dipoles via MLWF 

Cl- Na+
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NaCl in water
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Wannier Centers (WFCs) of H2O
Lone pair O-H s bond

The dipole moment P of the system reads

P = Pion + Pe = SIZIRI –Sn fnrn

r

r

r

r

RH

RH

RO
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IR absorption spectrum after WFCs

• Compute the dipole-dipole autocorrelation 
function

<P(t) P(0)> = <dP(t)/dt ・dP(0)/dt> / w2

• The IR absorption coefficient reads

a(w) =[4pwtanh(bw)]∫ e-iwt<P(t)P(0)> dt

・1/3n(w)cV
b=1/kBT, being T the simulation temperature, 
V= volume of the system, n(w) = refractive
index
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Pure and salty water

Type of agreement between theory and experiment

Infrared Spectrum
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Observation …
• Theoretical Overcorrection

systematic shift of theory vs. 
experiment

• Both experiments and theory  
suggest a shift. 

• From pure water to NaCl, 
low  wavenumbers are reduced 
and high wavenumbers are 
enhanced
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Dipole Moment distribution

pure
salty

Shift towards higher wavenumbers                  shift towards lower dipole moment

Indication that the distribution for NaCl @ H2O moves towards 
lower values of dipole moments
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Example 2 : random walk of a proton in water

Continuous breaking
and formation of 
chemical bonds…
…we shall see it 
later in more detail



Example 3: an electron solvated in water

• The excess electron in solution (e-
aq) was studied since the early 60s 

due to its fundamental interest in a large class of aqueous reactions 
• It is of practical importance in various areas of :

Physics (e.g. M. J. Tauber and R. A. Mathies, J. Am. Chem. Soc.  
125, 1394 (2003) - Raman spectroscopy of e-

aq), 
Chemistry (e.g. I. B. Martini et al., Science 293, 462 (2001) - optical 
control of electrons during electron transfer in solution) 
Biology (e.g. C. J. Fischer et al., J. Am. Chem. Soc. 124, 10359 
(2002) - Phosphorescence in proteins due to solvated electrons) 

• It is the basic example of electron (anionic) dynamics of solutes in 
water

• It is a probe for water properties, H-bond network topology and 
ability of H2O in solvating 
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Detection of hydrated electrons in liquid water

Transient absorption measurements made with fs laser pulses (A. E. 
Bragg et al. Science 306, 669 (2004)) across the 3 states of e-

aq : 
localized s-like ground state, near-degenerate LUMO p-like states and 
delocalized conduction band (CB) state (P. J. Rossky et al. Phys. Rev. 
Lett. 60, 456 (1988)).
The s     p relaxation is generally the detected quantity. 

fs laser pulse

s

p

pp
© Science

© APS
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Electronic structure of water at different densities

 
i

iE
N

DOS )(1 

LUMO
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Adding one electron in water:

• When an electron is added to the first unoccupied 
electronic state, it becomes partly localized and 
forms a solvation shell
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One extra electron in normal liquid water 
…after ~1.6 ps
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Density of states (DOS) for water at different 
densities

0.32 g/cm3

0.73 g/cm3

1 g/cm3

(e-)aq
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HOMO (s-like) / LUMO (p-like) transitions

Occupied s-like
ei= -2.5 eV

Empty p-like
ei= -1.0 eV

E = 1.5 eV
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What can we compute to compare with 
experiments ?

The optical spectrum given by

)()(1)(
2

,

yy


   jiji
ji

ji ffC p

where C is a constant, fi the occupation number, 
yi the KS eigenfunction and i the corresponding 
eigenvalue. All these variables and parameters 
are available from the simulation. 
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Optical absorption spectra

experiment 1.00 g/cm3

0.73 g/cm3

0.32 g/cm3
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What can we get out of a CPMD simulation ?

• Electronic structure evolution during the dynamics#

• Radial distribution function / pair correlation functions gij(r)
• Diffusion coefficients
• Vibrational, Infrared# (from dipole autocorrelation function) and 

Raman# spectra
• NMR chemical shifts# and hyperfine# ESR parameters
• Dynamical averages (statistical averages) of several physical

quantities as in classical MD: total and free energy, molecular 
velocity distributions, etc.

• Breaking and formation of chemical bonds# if the barrier is 
zero or very little (~ kBT). 

#                (not available in classical MD)
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Suggestions for further readings:

• An Introduction to Computational Physics, T. Pang, Cambridge University 
Press, Cambridge, 1997
• R. Car and M. Parrinello, “Unified approach for molecular dynamics and 
density-functional theory”. Phys. Rev. Lett. 55, 2471-2474 (1985) 
• Modern Methods and Algorithms of Quantum Chemistry

http://www.fz-juelich.de/nic-series/Volume3/Volume3.html
(freely downloadable)

• D. A. Schmidt, R. Scipioni and M. B. J. Phys. Chem. A 113, 7725 (2009)
• M. B., T. Ikeshoji and K. Terakura, ChemPhysChem. 6, 1775 (2005)
• M. B., M. Parrinello, K. Terakura, T. Ikeshoji and C. C. Liew, Phys. Rev. 
Lett. 90, 226403 (2003)
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Thermodynamic control methods: 
constant temperature on electrons and ions

As in the case of the Nosé-Hoover thermostat, a thermostat can be 
used for electrons to preserve the adiabaticity and keeping separate 
temperatures for ions and electrons.
This extension of the thermostat was originally proposed  by Blöchl 
and Parrinello (Phys. Rev. B 45, 9413 (1992)) and was applied in 
case of zero-gap systems, e.g. metals (molten Al).

As in the ionic case, a single variable  is introduced, along with s

to rescale electronic and ionic velocities.

II s RR  

)()( xx ii yy  
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Thermodynamic control methods: 
constant temperature on electrons and ions

Both  and s become dynamic variables and the extended 
Lagrangean reads

 

sTkNsQ

EQ
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B

kin
ee

ji
ijjiji

DFT
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II
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2222
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Ee
kin = CP fictitious 

electronic kinetic energy at 
which we want to keep the 
electrons
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Thermodynamic control methods: 
constant temperature on electrons and ions

This does not add too much computational workload. We just 
have one new equation of motion for the electronic thermostat

II
DFT

II M
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sE
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I
RR R
 21

2 


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Analogously to the Nosé-Hoover thermostat, the choice of Qe and of the target 
kinetic eneergy Ee

kin is equivalent to the choice of a characteristic e frequency 
at which the thermostat oscillates : 

e

kin
e

e Q
E2

w

Thermodynamic control methods: 
constant temperature on electrons and ions



Electrons at finite (electronic) temperature: 
Free Energy Molecular Dynamics approach

A system of N electrons is generally described in quantum mechanics
by its hamiltonian H, whose Schrödinger/Kohn-Sham equation reads

of being occupied. 
eBi TkEe /

NiEH iii ,...,1ˆ  yy
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• Each state yi can be either occupied (occupation number fi=1) 
or unoccupied (fi=0). 

• Ok for ground state and/or for materials with a wide band gap.
• However if a (quantum) system is not at Te = 0 K, but at a finite 

temperature Te > 0, then each state Ei has, (in the simplest case 
of a Boltzmann distribution) a finite probability



Electrons at finite (electronic) temperature:

With such a finite occupation probability

a sum over all the states 1,…,N, gives 

eBi TkEe /

ZFZee
N

e H
N

i

EF i log11 ˆ

0 b
bbb  



 

where b =1/(kBTe) and Z is the partition function.
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Electrons at finite (electronic) temperature:

    )ˆ(exp1det,, bb  HZ

Zlog1
b

W

For a fermionic system, the partition function is given by  

Then, the free energy is just the logarithmic functional

Why is this the free energy ? Simply because of its definition:

 HH
N

i

EF eeee i
ˆˆ

0
1det11 bbbb






  

including the constraint +N to fix the number of electrons
(microcanonical ensemble)
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Electrons at finite (electronic) temperature:

     IIeI ENF W rr R,

The ionic contribution (EII) must still be added to complete the
free energy functional of the whole system

Now we have all the ingredients to compute:
1) The forces on the electrons in the DFT-like fashion 

  i
i

FF
y

r


y


x


2) The forces on the ions in a molecular dynamics fashion

F
II Rf 
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Electrons at finite (electronic) temperature:
• FEMD-PBE based molecular dynamics with b =1/(kBTe)

• Hamiltonian given by

where VH = Hartree potential and a pseudopotential approach
accounts for the valence-core interaction (Vps): core electrons
are supposed not to be involved in the excitations

   IIe ENF W r x

     

xc
xcH EEVxd

H
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








W

 )2
))(

exp1detln2)

3

(x
(xx

(x

r
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b
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r

  ))(2
2
1 (xRxx r xcI IpsH EVVH  
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Electrons at finite (electronic) temperature:
• The electronic density given by KS orbitals and 

Fermi statstics reads 

• And the fs relaxation time of e- is << trelx
Ions so that 

the adiabatic theorem holds also in this case
(see Phys. Rev. B  42, 2842 (1990))
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Example of application of FEMD: Pure Si generated in SiO2

Synthetic silicon produced in a cheaper and more tunable way. i

New techniques for producing silicon might make this 
technologically crucial element cheaper. 
It could also give engineers new ways to design silicon chips, 
stripes, dots & co.

• Nohira, T., Yasuda, K. & Ito, Y. Nature Materials, 2, 397 (2003). 116

Si SiO2



Experimental background (and motivation):
• Making silicon for electronic devices requires extreme

(expensive) conditions: SiO2 is melted T > 1883 K and 
reacted with C to produce impure Si that has to be purified 
and re-crystallized.

• Immersing pristine SiO2 in a molten salt at T~1000 K and 
touching it with a metal wire injecting e- (Nature Materials
2, 397 (2003) )

• Or irradiating SiO2 with femtosecond laser pulse (App. Phys. 
Lett 87, 3495 (2003); Hirao’s & Murakami’s exp.), Si 
islands can be created in SiO2 below the melting point

• The laser pulse technique is tunable to create dots, wires
and nanotechnological Si structures in a matrix of SiO2.
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What has been done (and why):
• Laser pulses of different frequencies on a-quartz have been

simulated via finite electronic temperature molecular dynamics
within the Free Energy functional (A. Alavi et al., PRL 73, 
2599 (1994)) formalism to check for possible creation of Si-Si 
bonds. 

• This is supposed to reproduce what occurs when SiO2 is 
perturbed as in femto-second laser experiments. 

• Three different electronic temperatures are considered, 
corresponding to 3 different laser frequencies:
T[e] = 20000 K     ħ = 1.72 eV   
T[e] = 25000 K     ħ = 2.16 eV 
T[e] = 30000 K     ħ = 2.59 eV
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Simulation at Te=20000 K (1.72 eV)

119



Simulation at Te=25000 K (2.16 eV)
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Simulation at Te=30000 K (2.59 eV)
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Structure evolution 
at the 3 

electronic 
temperatures:

20000 K

25000 K

30000 K



Ionic temperature

(1883 K)
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Electronic density of states (DOS) of the 3 systems:
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Radial distribution functions for the 3 systems

Te = 20000 K (1.72 eV)

Te = 25000 K (2.16 eV)

Te = 30000 K (2.59 eV)

g(r)
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Dj is the diffusion coefficient of (j = O/Si) computed as

T[e] 
(K)

Tion (K) DSi (cm2/s) DO (cm2/s) Si-Si 
bond

20000 304+/-151 1.004 x 10-9 1.252 x 10-9 No

25000 367+/-102 4.100 x 10-9 8.489 x 10-9 Yes

30000 2870+/-220 1.415 x 10-7 3.401 x 10-7 Yes
(but 
melt)
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Trend of the diffusion coefficient of O and Si as a function of 
the electronic excitation



Structure evolution at Te=25000 K (with pbc applied): t = 1.2 ps

Two E’-like(*) dangling bonds trying 
to form a Si-Si bond

(*) MB., Pasquarello, Sarnthein, Car, Phys. Rev. Lett. 78, 887 (1997)
Donadio, Bernasconi, MB, Phys. Rev. Lett. 87, 195505 (2001)
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Final stable structure obtained at Te= 25000 K with pbc 
(Si-Si bonds in light blue)

129



Outcome of the simulations
• An electronic excitation of ~2.2 eV is able to promote Si-Si bond 

formation below the melting point of the material
• SiO2 does not melt but a sort of phase separation is induced. 

About 20% of Si atoms form bonds with nearby Si (25% if an O 
vacancy is present)

• The Si-Si bonds are formed in those parts of the SiO2 system 
where the electron excitations (higher “hot” filled KS states) 
localize

• The different diffusion coefficient of O (fast species) and Si (slow 
species) seems to play a role in the separation/reconstruction 
process

Related publications:
M.B., A. Oshiyama and P. L. Silvestrelli, Phys. Rev. Lett. 91, 206401 (2003)
M.B., A. Oshiyama, P. L. Silvestrelli and K. Murakami, Appl. Phys. Lett. 86, 201910 (2005)
M.B., A. Oshiyama, P. L. Silvestrelli and K. Murakami, Physica B 376, 945 (2006)
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