Introduction to Numerical Simulations and
High Performance Computing: From
Materials Science to Biochemistry
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Part 2:

First Principles Molecular
Dynamics



First Principles MD:
instead of looking for a potential V(R,), we try to include
quantum electrons and classical nucle1 and to compute forces
from fundamental quantum mechanics
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These electronic orbitals are what we want to describe.
So what can we do with our Hamiltonian ?

~ 1

H= Evz +V (x)+7,(x-R,) (R, = nuclear position)
In principle, we have simply to solve the Schrodinger equation
Hy, > =E, V/i>

But in case of many electrons the many body interaction V,, 1s
very complicated and the calculation of the many-body ; not
possible even with the most powerful computer...
so we need some tricks...(and some mathematics)




The Born-Oppenheimer method - 1

The Born-Oppenheimer approximation (M. Born and J. R.
Oppenheimer, Ann. der Physik, 4 Folge, 1927) assumes that

* Nuclei are much heavier than electrons, so that their kinetic
energy can be neglected 1n computing the electronic structure,

MNucl >> me — p2 /(2MNucl) << p2 /(2me)

* The true many-body wavefunction W(x,R,) can be written as
a product of separate wavefunctions

Y(x,R,)) =y (x) 9(R))
» The same electronic state (ground state) is unaffected by
small changes in the nuclear positions R, (adiabatic theorem)

* So the time-independent Schrodinger equation holds.



The Born-Oppenheimer method - 11

Practical applications of the BO method have been historically

successful in the so-called Hartree-Fock approach.

1) The electron many-body wavefunction W(q) 1s too complicated.
q = (X, Xy, ... , Xy, ) 18 @ multi-dimensional vector defining
position and spin state s of each electron in the system.

2) Then, one has to solve the associated Schrodinger equation

A(q,R,)¥(q) = E¥(q)

3) ...and 1t 1s assumed that W¥(q) i1s an antisymmetric combination
of single-particle orbitals y;, (x) (Slater determinant)

WlT(Xl) l/jli,(xl) WN,(XN)

1 (X)) w (X)) o w,(Xy)

1
Y(q) = JN det[‘//io (Xj)] = W

War (X)) W (X)) e W (Xy)



The Born-Oppenheimer method - 111

The many-body Schrodinger equation, written in terms of single-
particle orbitals

W;G' (X’)Wia (X’) .
X-X

{—; V24V, (x)+V,(x) +}%6 (x)— Z [ax Vo (X) = £, (X)

Where the first part in { } includes:
e the electron kinetic term

e the Hartree (Coulomb) potential

e the electron-1on interaction

The integral part, instead has no classical analog and represents
the quantum exchange interaction.



The Born-Oppenheimer method - IV

Orbitals v, (x) are generally expressed as linear combinations of
known analytic functions

W, (X) = Z Cikafk (x;{R,})

and 1n practical applications, a very popular, but somehow minimal,
basis set 1s represented by Slater-type orbitals (STO)

6, (x, IR, D= (x~R,) = ¢5°(r) = N, - rrPrk exp(= ¢, |1 |)
or Gaussian-type orbitals (GTO)

¢k(xa {RI}) = I?TO(X_RI) — I?TO(r) — Nk .rxerykyrzkz CXp(_ ak .I/.Z)



».

The Born-Oppenheimer method - V

— 1) Compute the electronic structure as usual:

ﬁWi>:Ei W,-> = det(<wl. ﬁwj>—E,-5,-j)=0

this implies a computationally (very) expensive diagonalization

2) Move the 10ns according to their equations of motion
2

ot
R, (t+0t)=R,+v,(t)ot+ M

v,(0)=|R,(t+5t)-R,(t—51)|/25¢

f[

in the velocity Verlet scheme.
+ 3) Re-orthogonalize the wavefunctions after moving the
atoms

<l//,- l//j>:5,-j ...and go back to 1)



The Born-Oppenheimer method - VI

Computing the electronic structure
Wi> =E, Wi> — det(<%

implies a computationally procedure of the steepest descent (SD),
preconditioned conjugate gradient (PCG), diagonalization in
iterative subspace (DIIS), etc.. All these methods can be regarded
as solving the wavefunctions updating algorithm

N

H

N

Hly,)-Es,)=0

i i

y,)=- Sl R, | + constr. =

3w,

At 6E[\|fi’ RI]
Hzo 6<\|]i(t)‘

Hzo v+ At)> = \Vi(t)> -

1.e. 15t order differential equations

10



Hellmann-Feynman forces: How to compute f;

Hellmann, H. (1937) “Einflirung in die Quantenchemie”, Deuticke, Vienna
R. P. Feynman, Phys. Rev. 56, 340 (1939)

To Compute the forces on the atoms one should compute

Ve (v,

N

H Wi> = (VR, <Wz‘
+ <l//l. H (VR,

N

)i Ve, Hlw,)

w,)+ v,
‘//i>)

However, an important simplification can be used if:

N

y Hl//i>:Ei

2) v,

v,)

l//j>=5,-j
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Hellmann-Feynman forces: How to compute f;

Hellmann, H. (1937) “Einflirung in die Quantenchemie”, Deuticke, Vienna
R. P. Feynman, Phys. Rev. 56, 340 (1939)

HenCe (v v Al + (v, [V ],

N

v )+ (W (Ve lv),
(Ve, W JEJw.)+ <t//, Ve Al + v |E (Ve v),
L, [( Vi, l//z } (V l//z‘> ]+<‘//z‘ VR,ﬁ ‘//z‘>:
E, -V (v |w:)+ <w,- Ve, Hw,) =
E Ve 1+{y,|Ve Hly,) =
IV l0) = 5, E = 19, i)

namely, the derivative of the operator is identical to

the derivative of the corresponding eigenvalue
12




Interlude: (before going on)
Function vs. Functional

Function : Functional:
A number (y) that depends A number (F) that depends
on a number (x) on a function (f(x))
b
y=r() F=| f(x)d
Example: y = x" Example: an integral over
(a line n=1, parabola n=2 a fixed interval (a,b).
etc...). y changes if x F changes if f(x) changes

changes

13



Variational (functional) derivative: an euristic
(practical) point of view

Consider a simple example known to everybody in physics:
the scalar product of two vectors

Ca ) /bl\

|a>= 1 |b>=

\4N ) by )

F:<a‘b>=2aibi

i=1

2

The scalar product F is simply a number that depends on the
two (set of) numbers a; and b..

14



Variational (functional) derivative: an euristic
(practical) point of view

We want now to compute the derivative of the scalar product
F with respect to b, the j-th component of [5>

dFF d Y db &

—:—<a‘b>=2ai ’ =Zai5..=a.

db, db, o -
J J J

The derivative simply selects the j-th component of |a> and kills

the sum operation.
We do now something that physicists always do without telling

to mathematicians.

15



We consider formally similar a discrete and a
continuous index

Discrete: Continuous:
Z : J. dx
a, b, - a(x) b(x)
d : )
db. ob(y)

0, - S(x—y)

16




A simple example of functional: the integral

In a way similar to the scalar product of two vectors, a functional
i1s a number that depends on one or more functions (not numbers):
e.g. the product a(x) b(x)

Fla,b]= j a(x)b(x)dx

And the derivative with respect to b(y) reads:

S Fla,b] [ PLLEP
ob(y) ob(y)

...and now we are equipped for the next steps:
Density Functional Theory and Car-Parrinello method.

= [a(x)3(x = y)dx = a(y)

17



Density Functional Theory: brief review

Define the electronic density p (x) as a superposition of
single particle Kohn-Sham (KS) orbitals

p(x) = Z filts(x)|?

Write the total energy functional as
E[%ﬂRI] — Ek T EH+ Exc T Eps T EM |

1.e. sum of the interactions electron-electron

+ electron-1on + 1o0n-10n

after W. Kohn* and L. J. Sham, Phys. Rev. 140, A1133 (1965) .
*Nobel Prize for Chemistry in 1998 '




Density Functional Theory: brief review

 FElectron-electron interaction:
By = __Z fzfd‘g:l:?j)’k VQYZ)Z( )

EH = = J"de d3 / P%i)ﬁ("f')

Ewc — dex ewc(pﬂ Vp)p(X)

» [E, = kinetic energy, £,,= Coulomb interaction,

E .= exchange-correlation interaction (= what we do

not know: The many-body interaction)

19



Density Functional Theory: brief review

* Electron-ion interaction:
E = Zjd3prS(X—Rl)p (x)
I

the core-valence interaction is described by
pseudopotentials

 Jon-10n interaction:

20



The Exchange-Correlation problem: a few points

* The exchange interaction and the electron correlations
are due to many-body effects and represented by the
term £ [ o]

* The exact analytical expression is unfortunately
unknown

* It 1s often assumed that exchange and correlation
contributions can be computed separately and then
linearly added as

E. lpl=E.|p]+E.|p]

21



* Approximate analytical expressions are generally derived
from the homogeneous electron gas limit, for the exchange
interaction (Becke, 1988)

Elp]=1Y [e2(p,md’r  lims (1) =

r

* So, the exchange part of the functional, can be written in the
so-called local density approximation (LDA) as

B3] Zfarp, ol ot

This 1s the simplest possible form and the name comes from the
fact that p 1s given by the local density p (x) at a specific point x.

22



* Similarly, the LDA version of the correlation energy, originally

proposed by Kohn and Sham (1965) and refined by Perdew
and Zunger (1981), reads

E [p]=[d*x p(x)-£,(p(x))

where the explicit analytic form of the function €.(p (x)) comes
from a parameterization from random phase approximation.

* Due to the msufficiency of a ssmple LDA approximation in the
treatment of many real systems, approximations including the
gradient of the density, p (x) are often adopted and the
exchange-correlation functional becomes

E. [p.Vp]= [d’xs, (p(x),Vp(x))

23



Why gradient correction/approximation ?

It s the first derivative of the density w.r.t. x
p(x+56x)= p(x)+Vp(x) Sx+ O(5x2)

 However it 1s not a Taylor expansion, not a
perturbation expansion, not an analytical
continuation, not etc....

e It 1sjust an empirical way to include something
beyond x-locality based on a (more or less) physical
meaning

24



® In practical applications, however, the gradient enters
only with its modulus ‘V,O(X)‘ thus adding only a modest
computational cost

® These generalized gradient corrections (GGA) are a bit
arbitrary, 1.¢. they are not a perturbation expansion

® Accuracy is assessed a posteriori by test calculations and
comparisons with both exact results and experiments.

® Exchange: Becke (1988) still regarded as a standard.
Subsequently refined and improved by the same author
(Becke 1992, Becke 1993)

® Correlation: From several research groups, sometimes
including also the exchange (Perdew 1986, Perdew and
Wang 1992, Perdew et al. 1992, Perdew et al. 1996,
Vosko et al. 1980, Lee et al 1988, Hamprecht et al. 1998,
Handy and Cohen 2002, Xu and Goddard III 2004).

25



Example of GGA on the exchange (after Becke):

* The lowest order GGA on the exchange 1s determined only
by dimensional analysis (1.€ 1t 1s not an analytical expansion)

GGA LDA V o
E N ()"3/3

 Problem: asymptotical divergence in atoms and molecules
 Workaround: A. D. Becke, Phys. Rev. B 38, 3098 (1988)

GGA _ pLDA 4/3 Cf 3
B2 = £ [l ]

where ‘V 0. (x)‘

- [0, (0]

and f (=0.0042) 1s fixed by a least-square fit procedure on a set
of training atoms / molecules.

26



Example of GGA on the correlation (after Perdew et al.):

* As in the case of the exchange correlation 1s written as a

linear combination of density and gradient dependent
addends

ES = [ p(x)- |62 (1,0 + £ (1. £ 1)

4 3
=—7-7

N, 3

e

where 7 1s the Wigner-Seitz radius p =

¢ = o (X)(_'L)% ®) == Dimensionless spin polarization (LSD)
p(x
= Vo) m=) Dimensionless gradient
20k, - p(X) 5

2/3 _eN2/3
(ETS ;(1 5) k, =4k, /ma, a,=h"/me’

27



Example of GGA on the correlation (after Perdew et al.):
® ¢ °C has to satisfy three conditions:
1) Slow varying limit (£ => 0). For . > 0 == (high density)

2

£ 5 Bpt* B =0.066725

d
2) Rapid varying limit (¢ —> ) mm) (low density = no corr.)
£GC _y _ o LDA
3) Uniform scaling to high density
(1) Vr, > 04— o(x) > 2’ p(Ax)
(i) r,—>0 as O
(iii) t—>o as OAX"?)

then E,9¢4 = constant

28



Example of GGA on the correlation (after Perdew et al.):

® ¢ “C becomes then the PBE expression after Phys. Rev. Lett.
77, 3865 (1996)

2 2
chze—y-gD3ln 1+£t2( 1+A4-t j

‘ 1+ A-t* + A%t*

dy 7 |
e 4P expl-e Iy -ge? /ay )1}
1-In2
7= T

In general: A series of plausible hypotheses and a lot of algebra
...and good luck !

29



Small warning about GGAs:

So far 1t seems that GGA exchange correlation functionals are

just linear combinations of density and gradient dependent
functionals, 1.e.

E lp.Vpl=EP[pl+ ES¥|V ||+ EX[p]+ ES [V )|

Well 1t 1s almost true but not always ! Counter-example: HCTH*
E [p.Vpl=Y ¢ [ex(py. 0. [Vos [V, Jd '
J

densities and gradients are mixed together and the coetticients ¢;
are computed by self-consistent least-squares procedure on a
“training set” of atoms and molecules...

*J. Chem. Phys. 109, 6264 (1998)

Vo,

>

30



A simple example of GGA effect: Magnetite

Spinel fcc structure carrying octahedral and tetrahedral Fe
0.4 . . . T

E—Ep(eV/fu)

v\ \

: B3 T GGA |
(relative) total energy as \v \\

a function of the volume | - ‘J,/
V.., = €xperiment ' : | :

€X
P 0.85 0.90 0.95 1.00 1.05 1.10

Vﬂ?cx P

© M. Friak, A. Schindlmayr, M. Scheffler, New J. Phys. 9,5 (2007)
31



©B.G. Johnson, PM.W. Gill, J.A. Pople, J. Chem. Phys. 98, 5612 (1993)

GGA effects on bond lengths

Molecule S-null S-VWN S-LYP B-null B-VWN B-LYP HF MP2 QCISD Expt.
H,

r(HH) 0.781 0.765 0.774 0.755 0.740 0.748 0.730 0.738 0.746 0.741
LiH

r(LiH) 1.683 1,640 1.646 1.663 1.624 1.628 1.636 1.640 1.653 1.595
BeH

r(BeH) 1.392 1.370 1.377 1351 1.349 1.355 1.348 1.348 1.357 1.343
CH

r(CH) 1.175 1.152 1.159 1.162 1.140 1.146 1.108 1.120 1.131 1.120
CH,(}B))

r(CH) 1.110 1.093 1.097 1.101 1.085 1.089 1.071 1.077 1.082 '1.078
a(HCH) 132.9 134.8 135.3 131.7 133.1 1335 130.7 131.6 1322 136.0
CH,('4))

r(CH) 1.158 1.135 1.141 1.148 1.127 1.132 1.097 1.109 1.117 1.111
a({HCH) 98.3 99.1 98.7 98.7 99.5 99.1 103.0 102.1 101.5 102.4
CH,

r(CH) 1.109 1.093 1.097 1.102 1.086 1.090 1.073 1.078 1.083 1.079 .
CH,

r(CH) 1.118 1.101 1.105 1.114 1.097 1.100 1.084 1.090 1.094 1.086
NH

r(NH) 1.083 1.063 1.068 1.074 1.055 1.060 1.024 1.039 1.048 1.045
NH,

r(NH) 1.064 1.045 1.050 1.060 1.042 1.046 1.013 1.028 1.034 1.024
a(HNH) 100.9 101.7 101.4 100.6 101.4 101.1 104.4 103.4 102.9 103.4
NH,

r(NH) 1.044 1.027 1.031 1.043 1.026 1.030 1.002 1.017 1.020 1.012
a(HNH) 104.9 106.0 105.8 104.0 105.0 104.8 107.2 106.4 106.0 106.0
OH

r(OH) 1.008 0.993 0.997 1.006 0.991 0.995 0.959 0.979 0.984 0971

S-null = Slater exchange, B-null = Becke exchange

32




GGA effects on vibrational frequencies
©B.G. Johnson, PM.W. Gill, J.A. Pople, J. Chem. Phys. 98, 5612 (1993)

Expt.

Molecule S-null S-VWN S.LYP B-null B-VWN B-LYP HF MP2 QCISD Obs® Harm."
H, (D) : :
> 4035 4207 4119 4286 4461 4373 4646 4534 4367 4160 4401
LiH (C,_,) ;
= 1270 1353 1338 1304 1385 1373 1416 1392 1331 1360 1406
BeH (C._.,) - i
> 1919 1984 1958 1981 2049 . 2023 2151 2135 2059 1986 2059
CH (C,.,) i :
b3 2534 2682 2647 2569 2718 2684 3058 2944 2818 2733 2862
CH, (*B)) (Cy,) |
A, 2961 3078 3048 2989 3102 3073 3325 3250 3186

1015 1010 985 1089 1093 . 1069 1239 1192 1149  963°
B, 3173 3311 3284 3192 3327 . 3301 3525 3471 3398 3190
CH, ('4,) (Cy,)
A 2614 2757 2726 2639 2784 2754 3129 3001 2903  2B0¢6°

1363 1392 1374 1425 1457 1437 1564 1499 1470 1353
B, 2694 2844 2814 © 2695 2847 2819 3192 3085 2980 2865
CH; (Ds;)
A 2950 3069 3044 2971 3092 3068 3285 3220 3159  3005°
AY 396 488 492 346 449 456 308 406 434 606
E' 3123 3252 3227 3129 3260 3237 3461 3409 3336 3161

1320 1356 1337 1378 1416 1395 1540 1481 1454 1396
CH, (T) et
4, 2879 2988 2969 2999 [3197] 3112 3066 [2917___3137]
E 1487 1526 1508 1535 1576 1557 . 1703 1626 1603 1534 1567 .
T3 3000 3121 3104 2974 3098 3083 3302 3250 3188 3019 3158

1260 1293 1272 1327 1362 1339 1488 1414 1400 1306 1357

33



GGA effects on dipole moment

©B.G. Johnson, PM.W. Gill, J.A. Pople, J. Chem. Phys. 98, 5612 (1993)

Expt.”

Molecule  S-null S-VWN S-LYP B-null B-VWN B-LYP HF MP2 QCISD
LiH 5357 5514 5346 5521 5662 5.501 5981 5776 5.563  5.88
BeH 0222 0216 0.194 0298 0293 0273 0337 0218 0.167
CH 1.285 1368 1349 1.234 1314 1.296 1582 1507 1371 1.46"
CH;('4;) 1.814 1903 1.895 1702 1789  1.783 2.016 1.965 1.802
CH,(*B) 0.610 0.689 0.694 0.547 0.631 0.638 0.582 0.636 0.635
NH 1,522 1.599  1.580 1458 1.529 1511 1750 1709 1.658 1.389°
NH, 1.999  2.067 2057 1875 1.945 1937 2135 2120 2.080 |
NH; 1979  1.969  1.980 1.885 1.893  1.902  1.920 1965 1.959 147
OH 1.745 1793 1.78¢ 1.652 1701  1.693  1.884 1.862 1.833  1.66
OH, 2109 2146  2.141 2042 [2.037] p.199] 2200 2.179
FH 1.860 1.894 1.886 1776 1.812 1.805 1972 1948 1.934 182
LiF 5216 538 5239 5330 5510 5359 6173 5850 5.864 633
CN 1.168  1.048 1025 1149 1031 1.009 2182 2113 1378 1L15°
HCN 2.827 2.873  2.860 2762  2.808 2796 3209 2949 2976 298
co! 0214 0189 0209 0.148 0122 0.145 —0264 0.192 —0.011 0.112
HCO 1.349 1436 1401 1355 1438 1401 2.083 1584 1.665
H,CO 1932  2.039 1.994 1964 2069 2.022 2666 2275 2.333 233
H,COH 1.592  1.643  1.619 1601 1.651 1.622 1.867 1.834 1.830 170
H,NNH, 2.196 2148 2129 2214 2206 2200 2243 2312 2302 175
NO* 0.195 0201 0217 0121 0130 0.147 —0210 0.078 0.057 0.153
HOOH 1.826 1.858 1.878 1.608 1.650 1.680  1.951 1796 1.825 2.2
Mean deviation —0.076 —0.035 —0.062 —0.113 —0.069 —0.094 0239 0.133 0.052
Mean absolute 0280 0252 0278 0255 0227 0.251 0289 0277 0.233 -

deviation

34



GGA effects on dissociation energies
©B.G. Johnson, PM.W. Gill, J.A. Pople, J. Chem. Phys. 98, 5612 (1993)

Molecule S-null S-VWN S-LYP B-nuil B-YWN  B-LYP HF MP2 QCISD Expt.*
H, 76.8 107.5 100.2 79.5 110.8 103.2 75.9 86.6 91.2 103.3
LiH 31.4 57.5 52.5 33.6 60.3 . 549 304 39.8 44.1 56.0
BeH 46.4 57.7 54.4 46.1 57.6 53.9 48.8 45.3 38.3 46.9
CH 61.0 86.7 85.4 56.6 82.4 79.9 50.0 63.6 66.6 79.9
CH,(’By) 163.8 2010 1981 1447 1818 171.7 142.9 161.7 160.7 179.6
CH,('A)) 135.6 185.1 181.7 1200 1708 1661 1123 141.2 145.0 170.6
CH, 2552 3205 . 3167 213 doams .. 2473 2233 259.4 259.4 289.2
CH, 3475 4368 4321 3960  [3899]  [3004] 3542 3539

NH 58.8 87.7 86.2 54.4 83.3 81.8 430 60.6 62.5 79.0
NH, 133.2 189.1 186.6 117.6 173.4 170.8 98.8 137.8 139.0 170.0
NH, 2249 306.0 302.6 192.7 2735 . 2701 170.2 232.4 230.7 276.7
OH 85.5 112.9 112.8 2.4 99.7 98.6 517 84.7 83.9 101.3
OH, 188.1 240.8 239.9 156.6 209.1 207.3 131.7 188.8 183.7 219.3
FH 119.3 146.2 145.6 99.5 - 1253 124.4 82.1 118.2 114.0 1352
Li, 5.6 22.5 21.8 34 20.5 19.8 22 14.1 20.9 24.0
LiF 125.9 151.3 152.6 110.5 1349 135.6 85.2 129.5 123.5 137.6
HCCH 363.9 438.6 444.0 305.5 380.1 383.4 271.9 365.6 351.2 388.9
H,CCH, 489.8 600.9 603.0 417.5 5285 .. 5281 394.2 489.4 4817 5319
H,CCH; 604.7 752.1 751.2 511.7 6649 660.9 506.0 608.5 603.1 666.3
CN 172.9 213.5 221.5 138.8 179.1 186.0 84.4 150.6 155.4 176.6
HCN 281.6 346.5 3526 2365 3012 . 3062 184.9 287.3 269.7 301.8
co 258.2 293.4 301.9 215.9 250.9 2574 168.3 254.3 2374 256.2

35



A few warnings:

* The explicit form adopted to describe the exchange and
correlation interactions represents a delicate step in the set-
up of the simulation and must be carefully tested and
benchmarked (see e.g. Acc. Chem. Res. 39, 151 (2006) for
an instructive example... OH™ in water).

* Keep in mind that no one of the present versions of £,
includes van der Waals interactions. In the cases in which
they are dominant, special corrections ad hoc must be
included (Langreth et al. 2005, Grimme 2006, Schwabe
and Grimme 2007, Silvestrell1 2008)

* They are not entirely (or not at all) self-consistent with the
DFT formulation.

36



Example of Hybrid Functional (1): B3LYP

The hybrid exchange-correlation functional B3LYP 1s a linear
combination of the Hartree-Fock exact exchange functional £ HF

with the GGA exchange-correlation gradient-corrected
(GGA=PBE, BLYP, HCTH, etc...) energy £ __as provided by DFT.

B3LYP . LDA HF LDA GGA LDA GGA LDA
EPWYT = EIP1 4 g (EMF — B )4 g, (ESOM — EYPA )+ g, (E9S* — E*)

where a,= 0.20, a,= 0.72 and a,= 0.81 are empirical parameters
determined by fitting the computed values of atomization energies,
1onization potentials, proton affinities, and total atomic energies to
experiments and higher level quantum chemical calculations (CI,
Coupled Cluster, multi-determinant methods,...) for a set of
training molecules.

37



Example of Hybrid Functional (2): HSE & PBEO

Also the hybrid functionals HSE and PBEO rely on calculation of the exact
Hartree-Fock exchange functional at least at short range E 1SR, More precisely,
the Coulomb potential is split into a short (SR) and a long range (LR) part as

1 1-erf(or) N erf(wr)

”\’Y’I\’;I
SR LR

The mostly used HSEO functional assumes (empirically) ®=0.2 and a mixing
coefficient a = 0.25

EZSE — aE;IF,SR ((0)+(1_a)EPBE,SR ((D)_I_E)ICDBE,LR ((D)+ECPBE

X

And the PBEO is the limit ® =0
E0 = B (0)+(1- a)E" (0)+ B

Xc X

Namely only the exchange term is affected, not the correlation
38



Wannier functions technique: a useful tool

Define, after G. H. Wannier, Phys. Rev. 52, 191 (1937)

ey k)

Wi(X_R):

being R the atomic site position. With k = 0 (I" point):
w,(x) = TTexp(~4@) -y (x)
p=0

using the initial condition w,9(x)=y/X5(x) for the iterative
solution at step p =0

References:
R. Resta, Phys. Rev. Lett. 80, 1800 (1998)
N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)
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WEC iterative scheme:

Pw ) =(w i)

Step p = 0 : using the initial condition w ()(x)=y/X5(x) write

X = < (O)‘exp z27rx/L)( (O)>

mn

Step p = 1: construct the matrix XV (analogously YV and Z(V) as
XY =exp(-4") - X9 . exp(4")

where A() is an antihermitian matrix corresponding to a
finite step 1n the direction of the gradient of Q

dQ)
A(l) — At - dA(O)
and d—Q:an(X:n —X;m)—X;n(Xmm -X,)

d A

mn 40



The Wannier functions, in practice, minimize the spread

Q= ;(m

2
r’|w,)—(w,

r|w,)’)

and are given by a unitary transformation of the KS orbitals

‘Wn>:ZiUin

l//'KS>

the center of mass of a Wannier orbital 1s a useful quantity

to characterize a system

Wannier Function Center

-G, -x

<ra,n> = —Gilm 10g<wn ‘e wn>

o

Current density

d
=)

a=xyz G,=2n/L

41



WFCs technique in a nutshell:

« Unitary transform the KS orbitals as

W (=11 exp(-A®) XS (x)
 The coordinate x, of the n® WFC reads
x = -(L/2m)Im log <w_|exp(-127x/L)|w >
and similar definition for y, and z,. Hence

rn:(xnﬂynﬂzn)

* The dipole moment P of the system reads

P= Pion T Pe — ZIZIIQI B annrn
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Wannier functions and WFC for a water molecule

dipole moment from WFCs:

P=P, TP, :ZZIRI _anrn
1 n
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General expressions for vdW interaction:
Adding to DFT what 1s missing

In (e.g.) a Grimme’s scheme (D2) the vdW interaction 1s
written as Nat ]

bl _ _ o . _—6
EvdW = 3 z 6 fdamp (ry)

i,j>i 'jj

fdamp (7}]- )= [1 + e_a6(rij / Ry _1)}1

s¢ depends on the functional (training set fit)

Very good approximation in many cases...

...but 1t looks like an analytical restrain on the atomic
coordinates (only) preventing the system to actually reach its
own ground electronic state (whether correct or incorrect)
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vdW 1nteraction from first principles:

One possible way
e Use the maximally localized Wannier functions scheme

= zs” - Z“"ﬁfflrzl"vu) = <'f1’}.-‘.‘.|r|]fl’1n>2)

H H

L { '
. == 5 Imln(wnIe_”-z""”fm"|“’n>

* From the WFCs positions r, and spread S, define:
33{4

N

o~ (V3/S,)lr—r,|

‘Vn(lr __I}I) 2
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vdW 1nteraction from first principles

e From the auxiliary analytical Wannier functions

’;53#% 5
wn(lr o rnl) _{ 3/ SllE=ty)

\/— 3/2
_ 3 ' \/pn pl(r’)
L Cé”l_3z-n3/2j\0£r 6\13 )

P (r

3 J“C‘gr 43 n( ) (r’

YR Pl w (r)+w(r')

Cﬁﬂ [ 1

Evaw = _Z.fﬂ(rm')rT fulr) = 1 +exp| —alr/R,—1)]
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(Not the only) possible vdW alternative
first-principles scheme

 vdW interaction written as usual

e~ Co
El gy = Z 6 'fnz(rnl)

I.n<i ¥y

Fulry)= [+ om0

» Results are almost independent on «a (~20)

* R =R 4wt R 4w,sumof the VAW radii of the MLWFs,
which determined as the radii of the 0.01 electron density

R, =(1.475-0.866-InS, ) S, S, = Wannierspread

33;{4

Jas

Jrom w, (Ir —r,|) = g B8,
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How to use this vdWC scheme

Method 1: Self-consistent time consuming but “exact”

min{EDFT,m}:> v w = U,i% _ EDFTm+l _ pDFTm | pWC

VW
\ re-loop at each ¢ /

* Method 2: compute vdWC non self-consistently at each ¢

. DFT I DFT DFT wcC
mln{E }W >y, =>w, =Uy =>E7 =L +F .,

* Method 3: if |R(#’>f) — R/(t)| > tolerance, compute vdWC as
above. Otherwise use the old C,,° and extrapolate WCs
according to the movement of R/(#’>7)

Futher numerical details in T. Ikeda & M.B. J. Chem. Phys. 143, 194510 (2015)
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Do we really need all the electrons of every atom to
describe a chemical bond ?

The core part in ...s0 we replace the (expensive)
general does not Vall-e(7) with a pseudopotential
contribute to the | | ’P5(r) that does not have the
formation of core states but reproduces
chemical bonds correctly the valence electrons
(inert)




This crucial observation led to pseudopotentials:
core electrons are eliminated

4

a potential describing the core-valence interaction is built by fitting
to the all-electron solutions of the Schrodinger or Dirac equation

D. R. Hamann, M. Schluter, C. Chang, C. Phys. Rev. Lett. 43, 1494 (1979)

4

Eel[p]:jd3XVps(X_R1)'P(X)

The elimination of the core electron from the calculation
allows one to get r1d of the short length scale problem
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Pseudopotential (PP): general scheme to get one

PP generation 1s a three-step process:

Y

2)

3)

In the first step one solves a Schrodinger-like / Dirac-like
spherical equation for the all-electron (AE) system,
computing eigenvalues ¢, and eigenfunctions v, (1)

In the second step one fits potentials /valence wavefunctions
of the same atom without core electrons to this one.
Generally, these potentials / wavefunctions angular-
momentum dependent must match the AE ones beyond a
given radius 7..

In the third step (“‘closer to cooking than to science” © P,
Giannozzi, 1998) one must test what she/he has generated
from the former steps to see 1f 1t makes sense.
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Y
2)
3)
4)
5)
6)
7)

§)
9)

Pseudopotential generation checklist:

Select the DFT level (GGA / LDA) you need / wish

Select valence and core states

Select a reference electron configuration (occupation)
Generate the AE wavefunctions

Select the matching radii r. (and core corrections if needed)
Generate the PP

Check 1f it works 1n your molecule / liquid / solid, 1.e. on
atomic configurations differing from the starting one (this 1s
what people call “transferability”)

Check the required basis-set convergence (cut-off in PW)
Check its separable form

Warning: Do not even think to do any of the above if you do not have experience
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Separable form ? What ?

The computational cost can be further reduced, provided that a

separable form 1s chosen for the pseudopotential (PP)
L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

¥

V,, )=V, (r)+ Z Do (r)Vl ¢lm (r)

*r=x—R,

* V,, .(r) depends only on the position r

* A non-local (VL) part depends on angular momenta /,m.

* The functions ¢,,(r)= f(r)Y,,(€2) are eigenfunctions of the
atomic Hamiltonian in which the core-valence interaction has
been replaced by the PP
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Norm-conserving pseudopotentials:

1) The PP (radial) wavefunction ¢"*(r) is nodeless
2) The PP (radial) wavefunction matches the all-electron one
¢'E(r) only beyond a certain distance 7, from the nucleus (cut-off

radius)
6 (r)=9"(r)  Vr>y
{¢AE(I”) =" (r)  Vr<p

3) the square norm of the wavefunction is preserved in the
pseudopotential construction

J:O ‘¢AE (r)‘2 redr =j0w ‘¢PP (r)‘2 redr
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A Difference between frue wavefunction
. and pseudo-wavefunction

~ Y

I 4 r(‘

Vp seudo

¢ Difference between frue Coulomb potential
7 - and pseudopotential
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Choosing valence and core states:

This seems to be trivial, and often it 1s: Valence states contribute
to bonding, core states do not. But....

in transition metals, whose typical outer electronic configuration is nd‘(n +
1)s’(n + 1)p*, it is not always evident that the ns and np states can be safely
put Into the core. The problem is that nd states are localized in the same spatial
region as ns and np states, deeper than (n+ 1)s and (n + 1)p states. This may
lead to ntolerable loss of transferability.

Heavy alkali metals (Rb, Cs, maybe also K) have a large polarizable core. PP’s
with just one electron may not work properly (even with the core correction, see
below)

3d states in GaAs may safely be left in the core (maybe with a core correction
for Ga), not so in GaN.

In ZnSe and other II-VI the d state of the cation has a nonnegligible contribution
to the bonding.

In all these cases, promoting the highest core states ns and np, or nd (the "semicore”
states) into valence may be a computationally expensive but obliged

© P. Giannozzi, 1998
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Atomic calculations:

1) Non-relativistic case: The Kohn-Sham (Schrodinger-like)
equation 1n spherical coordinates has to be solved

A |
——V* +[V(r)|— €] ¥(r)=0

here !

' " L3 Your LDA/GGA choice

1 0 DY i (1 L O
B ( ( (Hillgc {m(r)) 4. !m(r)) = Z([ i 1)}/757?1(f)

st 06 sinZf 02

h2 d2R,(r A 41
¢ J(?)+(? ( )+

2m  dr? Im 2

PrOViding the AE solution L’(I‘) — (R”f (r) ) Em(f‘)
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Atomic calculations:

2) Fully relativistic case: The Kohn-Sham (Dirac-like) equation
in spherical coordinates has to be solved for large components
R,,(r) and small ones S, ,(r)

_ ] A \ : T ; : ;
f(Lﬂi)RMUJ (2me® = V(1) + €) Su(r)

d B\ .. )
rﬂh)awu> (V(r) + ) Ruy(r)

r

where j =% (I=0) orj = [+1/2; [-1/2 (otherwise) and «x is the
Dirac quantum number k= -1 1f /=0, and k= -/-1, [ otherwise.
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Atomic calculations:

3) Scalar relativistic case: The Kohn-Sham (Dirac-like) equation
in spherical coordinates is solved only for the large components
R,,(r) and averages over the spin-orbit component, thus reading

(ZQR??. ' [([ - , - ‘

02 dV(r) {dRu(r) B )
_ »
AM(r) dr ( o TR — )

where @ = 1/137.036 1is the fine structure constant and <k > = -1

is the degeneracy-weighted Dirac quantum number, whereas
2
2

M(r)=1-— r (V(r) — ¢
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A practical (milestone) example: Analytic form of a
Bachelet-Hamann-Schliiter (BHS) PP

V() =V, (1) + ZAVNL (r)

L Not depending on angular momentum

=2 S el o)

NL NL
AV, (r) = ( +c]+3l r )exp( a;, -r )
]:
P fit: { loc _loc NL _NL }i:I,Z ] = d
arameters to fit: \@; ,¢; ,&,;,C; i3 LTSPAs...
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A simple comparison of AE vs. PP calculation: CH,

CH; in the singlet and triplet states (interatomic distances are in A, angles in degrees). Note that our AE calculations use a 6-311G**
and the others a 6-31G* basis set. AE = E('A;) — E(’B;) is the singlet—triplet energy difference in keal/mol

Method Singlet Triplet

C-H HCH C-H HCH AE

AE PP AE PP AE PP AE PP AE PP
LSD 1.130 1.125 100 101 1.091 1.091 137 137 15 14
BP - 1.122 - 101 5 1.086 = 135 - 13
BLYP 1.123 1.117 101 102 1.086 1.087 135 135 11 12
BLYP? 1.132 99.1 1.089 133.5 11.6
SCF 1.100 - 103 - 1.075 - 135 = 29 =
SCF 1.109 102.1 1.077 131.6 306
QCISD? 1.117 101.5 1.082 1322 15.7
MP2-G2P 1.109 102.1 1.077 131.6 6.6
Exp. 1.111¢ 102.4¢ 1.078¢ 136.0° 9,04

a,b = done by somebody else

(PW cut-off =40 Ry, 60 Ry, 80 Ry)

© M.B. and W. Andreoni, Chem. Phys. Lett. 265, 24 (1997)
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Most popular norm-conserving pseudopotentials:

- G. B. Bachelet, D. R. Hamann, M. Schluter, Phys. Rev. B 26,4199 (1982)
- X. Gonze, R. Stumpf, M. Scheffler, M. Phys. Rev. B 44, 8503 (1991)

- N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991)

- S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996)

Alternatives:

1) The norm-conservation can be released leading to ultra-soft pseudopotentials.
But, an augmented charge has to be added in order to restore the total charge
density as obtained upon integration of the square modulus wavefunction.

(D. Vanderbilt Phys. Rev. B 41, 7892(1990))

2) The inner electron wavefunctions are considered as frozen orbitals and

described with appropriate angular momentum projectors (PAW)
(P. E. Blochl Phys. Rev. B 50, 17953 (1994)).
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Chemical bonds: the atomic orbitals y(x) are modified as
a consequence of the interactions of the valence electrons
of the atoms involved

Eaxmple: H,O

...orthe s +p
leading to the
sp-hybridization
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H,O: electronic (KS) states

LUMO
-1.00 eV

O-H =0.966 A
HOH = 104.3°




€ IN+1

€ N

l
]r doublet *
€ IN-1 + ! e N-1 # glown |

Just a warning:
LDA 1) LSD

€% N+1 —‘I—
(ZS +1)=2 cup N _*_*7 gdown N

S e -

If no up-down levels splitting occurs, then
E°YLDA]=E"YLSD]

If the ground state of the system includes an energy-levels splitting

between an up-spin level and the corresponding down-spin one, then

E°YLDA]>EYLSD]
...then LDA 1s unable to converge to the proper ground state because
of the spin restriction
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Quantum Electrons in Molecular Dynamics

In 1985, Roberto Car (Princeton University) and Michele
Parrinello (Swiss Federal Institute of Technology) proposed to
use the fundamental quantum mechanics to write V(R,) in an
ab initio way

V(R,)=Ely, R, 1= (v, |

=1

R,)v,)

So no model potentials (analytic ad hoc functions) are needed
and electronic structure modifications can be directly described
by QM ...

...but how to compute at the same time the electronic structure
and the dynamic displacement of the atoms ?

R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)
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Car-Parrinello Molecular Dynamics

Instead of using the “brute” force way, we can generalize the
classical MD lagrangean by adding the electronic degrees of
freedom v,

a constraint for keeping the orthogonality of the wavefunctions
and any external additional variables o, (e.g. thermostats, stress,

etc.) : . 9
LEF = Y n ] &)+ %ZI MR
+3 20 Ha®e — EPFT[1h; Ry, o]

+ DAy ( / d>x i — 51-5,-)

]
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Car-Parrinello Molecular Dynamics

* Solve the related Euler-Lagrange EOM

d s oL

* ¥ O
" 5% 5% ‘ Electrons
d o oL

- =0 ‘
di OR, 0R, fons
d ot o

.— =0 ‘ external additional
dt ('B(xq ('B(xq .

variables
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Car-Parrinello Molecular Dynamics - 111

yd &

—r—

 Solve the 2" order differential
equations Euler-Lagrange EOM

5EDFT

b = — | A, |
l“pz 6¢j Z Jwiﬁ\y ) 1985 Trieste /
MR; = —VR[EDFT . X )~
o pDFT P &
flgty = —
49 aaq

Temperature, pressure, etc. -




Car-Parrinello Molecular Dynamics

» Instead of using the “brute” force way, we can generalize the classical MD
Lagrangean by adding the electronic degrees of freedom v,

2500 -lllllllllllllllllllllllllllll-

: =

2000 - @CPPRL 1985 | -

-| o AIMD i

. o ® -

g 1500 : i :

E C g

Z 1000 | 8 -

C &

n ®

500 | o -

Michele Parrinello Roberto Car 0 - -
ETH-Zurich Princeton Univ. 1970 1980 1990 2000

Year n

That the entire field of ab initio molecular dynamics has grown mature
is also evidenced by a separate PACS classification number (71.15.Pd “Electronic
Structure: Molecular dynamics calculations (Car—Parrinello) and other numerical
simulations™) that was introduced in 1996 into the Physics and Astronomy Classi-
fication Scheme
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Car-Parrinello Molecular Dynamics

Let us observe that 1t 1s straightforward to give a
Hamiltonian, instead of a Lagrangean, with a simple
Legendre transform after defining the momenta

Sr°F \ Sr°F

A R T

7,(%)

p, = VR[[,CP =M R,

. a LCP

é/q_ 5dq _'uqdq
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Car-Parrinello Molecular Dynamics

e so that the Hamiltonian reads

3 ﬂ(X)ﬂ(X) Sy o
2M [ dx . Z E”|p,{R,},a,]

HCP .

C]

_ Z”‘J(I d*xy ] (X (X) - 51-]-)

and the CPMD equations of motion will be given by the
corresponding Hamilton equations for each set of variables

and momenta.
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BO surface

CP trajectory \
BO trajectory /

The difference between the CP trajectories R,“F(t) and the
Born-Oppenheimer (BO) ones R89(t) is bound by

IR -REO(M <Cpl? (C>0)

i o, = \/2.(8LUM0 _ gHOMO )/,U >0 Atpax X Aggn.p

F.A. Bornemann and C. Schiitte, Numerische Mathematik 78, N. 3, p.359-376 (1998)
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Practical implementation

To implement the CP-EOM numerically, the KS orbitals are
generally expanded in plane waves

YA(X) = 2 c(G) el
G are the reciprocal space vectors. The Hilbert space spanned
by PWs i1s truncated to a suitable cut-off £ such that
G2 /2 < [eut

PW:s have so far been the most successful basis set, in particular
for extended systems requiring periodic boundary conditions

The basis set accuracy can be systematically improved in a fully
variational way

PWs are independent from atomic positions (no Pulay forces)

However they are not localized and can be inefficient, e.g., for

small molecules or clusters in a large simulation cell o



Plane wave expansion: yi(x) = 2 c(G) e'G¥

For each electron i=1,...,N , G=1,...,M are the reciprocal space
vectors. The Hilbert space spanned by PWs is truncated to a
cut-off G, 2/2 < Eeu

R space = G space

cut

cut
E1

cut cut
E,ut> E,

(3¢
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Practical implementation

e Verlet’s algorithm on EOM gives
(WAP) =[ [y (tHAD)> + [y, (t-AD)> - 2 [y (0)>] = -(FH+A) [y (6)>
or, in G-space,

/]

LG A+ (G- 8- 26/(G.0)]= Y (GIHT|G)e (G + XA c,(G)

» The 1onic degrees of freedom R(t) are updated at a rate (speed)
At while the electronic degrees of freedom |y(t)> are updated at a
rate At/ul? (At ~ 5 a.u., p~ 500 a.u.), hence they are much
slower (adiabatic) with respect to the ions.

* The parameter that controls the adiabaticity (BO) 1s i

« However this At 1s driven by QM and is much shorter than 6 ¢ in
classical MD
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Practical implementation

« To achieve computational efficiency, pseudopotentials are
written 1n the Kleinmann-Bylander separable form

Vps(x,x”) = Viee(x) 8(x-x)

T Zlm ¢ lm(X)A Vlm ¢*lm(x,)

being V ‘¢ the local part and AV, the non-local V"L angular
momentum dependent part.

* (Core electrons, as we have seen before, are not taken into
account explicitly...

 ...unless partial core corrections or semicore states are needed
(e.g. core polarization effects)
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G space
c(G) N*FFT
1
26 ¢(G) G* {E,
VNL(G) {ENL}
G - FFT
1
Vee(G) + Vil G) {E+Ey;
= V,/(G) &l
1 N*FFT
Vioc(G)e(G) *
+ PVY(G) + I ¢(G) G2
°L_ fe(G)

5¢,(G)

R space

wi(x)

y

piX)

VilX) {E,)

» Vi H(X)

= ViodX);
ViodX) w(x)

Wi>}

‘A
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Practical implementation: orthogonalization (7)

To keep the wavefunction orthogonal to each other during the
dynamics, the Lagrange multipliers A =[] are computed in
an 1terative self-consistent way.

1) first propagate the wavefunction in an unconstrained way
- At’
(e + At)= =y, (e = At)+ 2y, (1) + " |- Hy,(t)]
2) correct the updated wavefunction with the constraint
l//i(t T At): l//Nz'(t_|' At)"‘ Z'xijl/ji(t)
j

where x; = (A?/p) 4,
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Practical implementation: orthogonalization (if)

3) This gives us an equation for the Lagrange multipliers

XX"+XB+B'X" =1-A

where A, = (i7 (¢ + A7, 1+ An)) , B, = (v, (0)| 7, (¢t + An))

4) Note that A =1 + O(A#) and B =1 + O(Af). We can then
solve 1teratively

X" = % 1-A+X"P(1-B)+(1-B* X" - X"?]

1
with the initial condition X(O) — 5 (1 o A)

Generally 2-6 1terations are necessary between two subsequent

simulation steps if Af ~ 5-6 a.u. or less 50



Practical implementation

G=1,....M (loop on reciprocal vectors) distributed 1n a parallel
processing in bunches of M/(nproc) or via MPI or hybrid
MPI+OMP

i =1,....,N (loop on electrons) distributed (MPI / OMP)
k =1,...,Ny, (loop on k-points) distributed (MPI/ OMP)

I=1,...,N,,.. (loop on atoms) distributed (MPI / OMP),
particularly useful in QM/MM simulations where MM ~ O(N)

The scaling of the algorithm 1s O(NM)for the kinetic term,

O(NM logM) for the local potential and O(N*M) for the

non-local term and orthogonalization procedure (all other
quantum chemical methods scale as O(MN?3) M=basis set)

(see e.g. http://www.cpmd.org)
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General scheme of a computer code for First Principles M1

Provide 1nitial atomic coordinates R/(7) and wavefunctions y(x)
and select ot

{

Compute forces: f,= - 0E(y; ,R))/0R,

{

Dk

2

: ot
Moveatoms: p (1+5) =R, (t)+5t-v,(t)+ A0
and update with wavefunctions y/(x) — w/"9%(x) I

{

Move time forward: t — ¢+ ot
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Car-Parrinello & Born-Oppenheimer MD
their respective (dis)advantages - 1

Conservation of constants of motion Good Convergence
dependent
Electronic optimization Not needed Needed
Hamiltonian diagonalization Not needed Needed
Integration step Small Large
Minimum of the BO surface Approximate Exact

* CP-like y; propagation — Stability

» Large Ar with no SCF cycle == Efficiency
e Dynamics ~ true BO - Accuracy
 BO deviation under control === Min. Error

83



Car-Parrinello & Born-Oppenheimer MD
their respective (dis)advantages - 11

BO:

 Diagonalization / minimization of EP*7 are required in BO

* Hellman-Feynman forces are just one component, Pulay forces
exist 1f local basis set are used

* Residual forces components appear unless strong convergence
criteria are imposed. Ap = p — pBY

exira aV BO
Fe —jd%[ 50;50 ]-Ap+VH[Ap]]-VR1pBO

CP:

* Only Hellman-Feynman forces (at least in PWs)

* No residual SCF forces because of the fully Lagrangean
(variational) equations of motion

84



Examp{e 1: Salts 1n water

Na*

« What are the effects of the presence of 1ons ?
* Do they have a detectable influence ?
 What can we learn ?
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Why should we care ?

Hydration properties of monovalent and divalent metal
cations are a key 1ssue 1n the understanding of several
chemical and biochemical processes, such as, for instance,
1on channels

ion channel
ares et 2 {_
J&i. i - s .,_r

- -

g B e .l jon filter

cell J

membrane 4 5 i "
7 -7 r %  cellmembrane

Gate

Hydration-dehydration €@
processes are the basis of ~ ©

(e.g.) potassium channel 1n

intermembrane proteins and

pores 86



Computational Details:

* Car Parrinello MD with BLYP and Troullier Martins pseudopotentials
e,
* Basis set: PWs; 70 Ry for pure water; ) /J o ( s
80 Ry for NaCl + H,O (semicore states A /_ f /
included for Na)

e u=340.0au. Ar=4.0au
T'=300 K using Nos¢-Hoover Thermostat

e NaCl: 126 water molecules + 1 Na“and 1 Cl” _ | __>
cubic cell with PBC w < . ‘\ :
(same concentration used in experiments and present in extracellular
environments)

* IR spectrum obtained via Fourier transform of the dipole-dipole

autocorrelation function
» Molecular dipoles via MLWF
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NaCl 1in water
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Wannier Centers (WFCs) of H,O
Lone pair O-H o bond

The dipole moment P of the system reads

P = Pion T Pe — Z]ZIR] _annrn
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IR absorption spectrum after WFCs

e Compute the dipole-dipole autocorrelation
function

<P(t) P(0)> = <dP(t)/dt « dP(0)/dt>/ »?
* The IR absorption coefficient reads
a(o) =[4notanh(Bro)]] e @<P(t)P(0)> dt
- 1/3hin(w)cV
B=1/kxT, being T the simulation temperature,

V= volume of the system, n(®) = refractive

Index
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Pure and salty water

)
M3
=

2

Infrared Spectrum

1.0

Normalized

=
=

=
o

Absorbance
Difference (A.U.) Absorb. (A.U.
=
[ L% ]

0 1000 2000 3000 | 4000

Wavenumber [n:md]

\ 4

Type of agreement between theory and experiment
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Mormalized

Absorbance

0.5=

=

Observation ...

5 1.0 e

11111111111

= Experiment
= Theory

1000 2000 3000

Wavenumber [cmdj

4000

» Theoretical Overcorrection

¥

systematic shift of theory vs.
experiment

* Both experiments and theory
suggest a shift.

* From pure water to NaCl,
low wavenumbers are reduced
and high wavenumbers are
enhanced
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Dipole Moment distribution

= o
= 1.6 g
< o
— &l
1.2 0.2 o3
5 g
_E 0.8 D.D%
g Z
o 0.4 -0.23
Q 0
|

= 0.0 p
e >
E 4.0 3.5 3.0 2.5 2.0 C
e Dipole moment (D) —

Shift towards higher wavenumbers _ shift towards lower dipole moment

Indication that the distribution for NaCl @ H,0O moves towards

lower values of dipole moments
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Example 2 : random walk of a proton 1n water

Continuous breaking
and formation of
chemical bonds...
...we shall see 1t
later in more detail




Example 3: an electron solvated in water

The excess electron in solution (e",,) was studied since the early 60s
due to its fundamental interest in a large class of aqueous reactions

It is of practical importance in various areas of :

Physics (e.g. M. J. Tauber and R. A. Mathies, J. Am. Chem. Soc.
125, 1394 (2003) - Raman spectroscopy of e€7,),

Chemistry (e.g. I. B. Martini et al., Science 293, 462 (2001) - optical
control of electrons during electron transfer in solution)

Biology (e.g. C. J. Fischer et al., J. Am. Chem. Soc. 124, 10359
(2002) - Phosphorescence in proteins due to solvated electrons)

It is the basic example of electron (anionic) dynamics of solutes in
water

It 1s a probe for water properties, H-bond network topology and
ability of H,O in solvating
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Detection of hydrated electrons in liquid water

— 1233A — 5

CB AOD(Ar) oArS
e-
fs laser pulse =4 ( p)
\
e-aq (S) © Science

Transient absorption measurements made with fs laser pulses (A. E.

Bragg et al. Science 306, 669 (2004)) across the 3 states of e,

localized s-like ground state, near-degenerate LUMO p-like states and
delocalized conduction band (CB) state (P. J. Rossky et al. Phys. Rev.

Lett. 60, 456 (1988)).

The s« p relaxation is generally the detected quantity.
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Electronic structure of water at different densities

DOS
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Adding one electron 1in water:

* When an electron 1s added to the first unoccupied
electronic state, it becomes partly localized and
forms a solvation shell
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One extra electron in normal liquid water
...after ~1.6 ps

Iso=1x10%, 7 x 105 1/A3
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Density of states (DOS) for water at different
densities

- 0.32 g/cm’
- (e-)aq

- \ / \_/l/
e L

|
-25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0
E (eV)

DOS (arb. un.)
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HOMO (s-like) / LUMO (p-like) transitions

Occupied s-like
=-25¢eV

l

e~-1.0eV
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What can we compute to compare with
experiments ?

The optical spectrum given by

25(31.—8].—?2(0)

0@ =C— X (1~ £l bl

where C 1s a constant, f; the occupation number,
v the KS eigenfunction and &, the corresponding
cigenvalue. All these variables and parameters
are available from the simulation.
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What can we get out of a CPMD simulation ?

« Electronic structure evolution during the dynamics”
* Radial distribution function / pair correlation functions g;(r)
« Daiffusion coefficients

« Vibrational, Infrared” (from dipole autocorrelation function) and
Raman” spectra

 NMR chemical shifts” and hyperfine* ESR parameters
« Dynamical averages (statistical averages) of several physical

quantities as in classical MD: total and free energy, molecular
velocity distributions, etc.

e Breaking and formation of chemical bonds” if the barrier is
zero or very little (~ &z 7).

7 ‘ (not available in classical MD)
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Suggestions for further readings:

» An Introduction to Computational Physics, T. Pang, Cambridge University
Press, Cambridge, 1997
« R. Car and M. Parrinello, “Unified approach for molecular dynamics and
density-functional theory”. Phys. Rev. Lett. 55, 2471-2474 (1985)
* Modern Methods and Algorithms of Quantum Chemistry
http://www.{z-juelich.de/nic-series/Volume3/Volume3.html
(freely downloadable)
* D. A. Schmidt, R. Scipioni and M. B. J. Phys. Chem. A 113, 7725 (2009)
* M. B., T. Ikeshoji and K. Terakura, ChemPhysChem. 6, 1775 (2005)
* M. B., M. Parrinello, K. Terakura, T. Ikeshoji and C. C. Liew, Phys. Rev.
Lett. 90, 226403 (2003)
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Thermodynamic control methods:
constant temperature on electrons and 1ons

As 1n the case of the Nosé-Hoover thermostat, a thermostat can be
used for electrons to preserve the adiabaticity and keeping separate
temperatures for 1ons and electrons.

This extension of the thermostat was originally proposed by Blochl
and Parrinello (Phys. Rev. B 45, 9413 (1992)) and was applied in
case of zero-gap systems, e.g. metals (molten Al).

As 1n the 1onic case, a single variable £ is introduced, along with s
R, > s R,
Wi(x) — 5 W;(X)

to rescale electronic and 1onic velocities.
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Thermodynamic control methods:
constant temperature on electrons and 1ons

Both &£ and s become dynamic variables and the extended
Lagrangean reads

L= ng 72 (x)\ +— ZM s’R? — EP'T

+ Z Al . (< > 51’]’ )
E Jin = CP fictitious

-2 kin electronic kinetic energy at
+5Qe§ —2E" Iné oy | gy

which we want to keep the
1

electrons
+ EQS2 ~ (BN + 1)k, Tlns
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Thermodynamic control methods:
constant temperature on electrons and 1ons

This does not add too much computational workload. We just
have one new equation of motion for the electronic thermostat

S EDFT g
1 (x) = — e > Ay (X)=2u-y,(x) | electrons
W, J g
MR, = %VRIEDFT ~22M R, ions
S S
2 lectronic
“ d3 Ekm C
Q 5(5 Z,u j v, (X)‘ j thermostat
1 10nic
— M, R 3N +Dk.T
g { Z —( ) } thermostat
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Thermodynamic control methods:
constant temperature on electrons and 10ns

Analogously to the Nosé-Hoover thermostat, the choice of O, and of the target
kinetic eneergy E " is equivalent to the choice of a characteristic @, frequency
at which the thermostat oscillates :

2E™
Q) =

e 0

® jonic subsystem thermostat
/ ® jonic subsystem
O electronic subsystem thermostat /

® electronic subsystem
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Electrons at finite (electronic) temperature:

Free Energy Molecular Dynamics approach

A system of N electrons 1s generally described in quantum mechanics
by its hamiltonian H, whose Schrodinger/Kohn-Sham equation reads

1ly,)=E]y,) i=1,.,N

H
« FEach state y; can be either occupied (occupation number f=1)
or unoccupied (f;=0).
* Ok for ground state and/or for materials with a wide band gap.
* However if a (quantum) system is not at 7, = 0 K, but at a finite
temperature T,> 0, then each state £, has, (in the simplest case
of a Boltzmann distribution) a finite probability

—E. /kpT
e i Bte

of being occupied.
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Electrons at finite (electronic) temperature:

With such a finite occupation probability

—FE. kT
e i Bte

a sum over all the states 1,...,N, gives

N :
e " =iZe_ﬂEl’ =<e‘ﬂH>:Z = F:—llogZ
NS p

where =1/(kzT,) and Z 1s the partition function.
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Electrons at finite (electronic) temperature:

For a fermionic system, the partition function 1s given by
Z(,B, ,u,u) = det{l + exp[— B(H — u)]}

Then, the free energy 1s just the logarithmic functional

Q:—ilogZ
p

Why i1s this the free energy ? Simply because of its definition:

e = li e Pt = <1 + e‘ﬁﬁ> = det(l + e‘ﬁﬁ)
U i

including the constraint +uNV to fix the number of electrons

(microcanonical ensemble) 2



Electrons at finite (electronic) temperature:

The 10nic contribution (£},) must still be added to complete the
free energy functional of the whole system

Flp.R,j|=0lp|+uN, +E,

Now we have all the ingredients to compute:
1) The forces on the electrons in the DFT-like fashion

OF _ OF |\
5w, op(x)"™

2) The forces on the 10ons 1n a molecular dynamics fashion

f,=—Vy F
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Electrons at finite (electronic) temperature:
 FEMD-PBE based molecular dynamics with 8=1/(k;T))
£= Q[P(X)]'l' UN, +L,

Q[p(X)]=—%mdet{“exp[—ﬁ(fl—u)]}

~[d’x p(x){VHz(X) T 55 f();)} +E.

e Hamiltonian given by

H=—1V' 1V, (x)+ Z]VPS(X—R])+5EXC/5,0(X)

where V= Hartree potential and a pseudopotential approach
accounts for the valence-core interaction (¥,): core electrons

are supposed not to be involved in the excitations
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Electrons at finite (electronic) temperature:

» The electronic density given by KS orbitals and
Fermi statstics reads

pe) =3 flw.f

fediit)

* And the fs relaxation time of e is << fel¥,___
the adiabatic theorem holds also in this case

(see Phys. Rev. B 42,2842 (1990))

so that

115



Example of application of FEMD: Pure Si generated in SiO,

Synthetic silicon produced in a cheaper and more tunable way.

-

Si

< SiO,

New techniques for producing silicon might make this
technologically crucial element cheaper.

It could also give engineers new ways to design silicon chips,
stripes, dots & co.

* Nohira, T., Yasuda, K. & Ito, Y. Nature Materials, 2, 397 (2003). 116



Experimental background (and motivation):

Making silicon for electronic devices requires extreme
(expensive) conditions: S10, 1s melted 7> 1883 K and
reacted with C to produce impure Si that has to be purified
and re-crystallized.

Immersing pristine S10, 1n a molten salt at 7~1000 K and

touching 1t with a metal wire injecting e (Nature Materials
2,397 (2003) )

Or irradiating S10, with femtosecond laser pulse (App. Phys.
Lett 87,3495 (2003); Hirao’s & Murakami1’s exp.), Si
1slands can be created in S10, below the melting point

The laser pulse technique is tunable to create dots, wires
and nanotechnological Si structures in a matrix of S10,.
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What has been done (and why):

Laser pulses of different frequencies on a-quartz have been

simulated via finite electronic temperature molecular dynamics
within the Free Energy functional (A. Alavi et al., PRL 73,

2599 (1994)) formalism to check for possible creation of S1-Si1
bonds.

This 1s supposed to reproduce what occurs when S10, 1s
perturbed as n femto-second laser experiments.

Three different electronic temperatures are considered,
corresponding to 3 different laser frequencies:

Tle] =20000 K hw=1.72 eV
Tle] =25000 K hw=2.16 eV
Tle] =30000 K A =2.59 eV
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Simulation at 7,=20000 K (1.72 eV)
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Simulation at 7,=25000 K (2.16 eV)
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Simulation at 7,=30000 K (2.59 eV)
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Structure evolution
at the 3
electronic
temperatures:

30000 K

25000 K
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Electronic density of states (DOS) of the 3 systems:

| 1 | ' | ' | ' | ' | ' |
T[e]=30000 K (2.59 eV)

Tle]=25000 K (2.16 eV)
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Radial distribution functions for the 3 systems

15

10

g(r)
10

n'|"'|"'|"'|_

T,=20000 K (1.72 eV) i
Si-O |

T, =25000 K (2.16 €V) 1

1, =30000 K gé9 eVQ .
\—r|-—1="":|.l|
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Tle] Tion (K) | Dg; (em?/s) | D (cm?/s)
(K)
20000 | 304+/-151 {1.004 x 10| 1.252 x 10-° No
25000 | 367+/-102 |{4.100x 10| 8.489 x 10~ Yes
30000 |2870+/-220|1.415x107| 3.401 x 10”7 Yes
(but
melt)

D; 1s the diftusion coefficient of (j = O/S1) computed as

Df - %J‘OAHOO <

Jj =1

Nijv{(t) v{(0)> dt
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Trend of the diffusion coefficient of O and Si as a function of
the electronic excitation
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Structure evolution at T,=25000 K (with pbc applied): = 1.2 ps

Two E’-like™ dangling bonds trying
to form a Si-Si bond

(*) MB., Pasquarello, Sarnthein, Car, Phys. Rev. Lett. 78, 887 (1997)
Donadio, Bernasconi, MB, Phys. Rev. Lett. 87, 195505 (2001)
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Final stable structure obtained at T .= 25000 K with pbc
(S1-S1 bonds 1n light blue)
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Outcome of the sitmulations

* An electronic excitation of ~2.2 €V 1s able to promote Si-Si1 bond
formation below the melting point of the material

* S10, does not melt but a sort of phase separation 1s induced.
About 20% of S1 atoms form bonds with nearby S1 (25% 1f an O
vacancy 1s present)

« The Si-S1 bonds are formed in those parts of the S10, system
where the electron excitations (higher “hor” filled KS states)
localize

» The different diffusion coefficient of O (fast species) and S1 (slow
species) seems to play a role in the separation/reconstruction
process

Related publications:
M.B., A. Oshiyama and P. L. Silvestrelli, Phys. Rev. Lett. 91, 206401 (2003)
M.B., A. Oshiyama, P. L. Silvestrelli and K. Murakami, Appl. Phys. Lett. 86,201910 (2005)

M.B., A. Oshiyama, P. L. Silvestrelli and K. Murakami, Physica B 376, 945 (2006)
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