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Outline of the lectures
• Classical Molecular Dynamics (MD): Newtonian and Lagrangean 

dynamics; basic algorithms; time/ensemble averages
• First Principles MD: Brief review of Hartree-Fock approaches 

and Density Functional Theory; First Principles Molecular 
Dynamics (FPMD); Mermin functional and Free Energy MD 
(FEMD)

• Hybrid schemes: Combined classical MD and DFT-based MD: 
Hybrid QM/MM methods

• Advanced Methods - Reactive schemes: Free Energy sampling 
techniques and reaction path sampling

• Advanced Methods - Path Integral and non-Adiabatic Methods: 
Quantum nuclei and surface hopping dynamics

• Brief overview of HPC architectures and parallel programming
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Hy = Ey

F = m a

e-(DE/kT)ab initio

molecular
dynamics

coarse grain

mesoscale
continuum

Time and Length scales in simulations

Length Scale (m)
10-10           10-8                 10-6             10-4
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10-12
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Molecular Dynamics & Monte Carlo

W = physical observable

Monte Carlo
Molecular Dynamics

Ergodic principle

W(1)
W(2)

W(n)W(t0)

W(t1)

W(t)
...

...

MDtMCn
tn )(lim)(lim W=W=W



In the limit of long simulation time (time average) and large 
sampling (ensemble average) the same result is reached
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High Performance Computing(HPC) in a nutshell

• John von Neumann (Manhattan Project) programmed the first algorithm on 
ENIAC (Electronic Numerical Integrator And Computer)
• ENIAC was designed to calculate artillery firing tables for US Army’s 
ballistic reseach (1946)

Nowadays 
ENIAC@ IPCMS 
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Massive computing hierarchy @ 21th century 
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Science (Math.Phys.Chem.Bio…)

Modeling (methods & Co.)

Algorithms (translate eq. into codes)

Software (codes & programming)

Hardware (computer arch.)

Average …  Very Good



8



9

Part 1: 
Classical 

Molecular Dynamics



10

Molecular Dynamics (MD)

The aim of Molecular Dynamics (MD) is to study a system 
of interacting particles by recreating it on a computer in a 
way as close as possible to nature and by simulating its 
dynamics over a physical length of time relevant to the 
properties of interest.

Any MD method is an iterative numerical scheme for 
solving some equations of motion (EOM), coded in a 
computer program, that represent the physical evolution 
of the system under study
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Molecular Dynamics (MD): Brief History

• MD was introduced by Alder and Wainwright in the late 1950's 
to study the interactions of hard spheres. Many important 
insights concerning the behavior of simple liquids emerged from 
their studies. 
B. J. Alder and T. E. J. Wainwright, 

Chem. Phys. 27, 1208 (1957)
J. Chem. Phys. 31, 459 (1959)

• The next major advance was in 1964 by A. Rahman: first 
simulation using a realistic potential for liquid Ar
A. Rahman,  Phys. Rev. A 136, 405 (1964) 

• The first molecular dynamics simulation of a realistic system 
(liquid water) was done by Rahman and Stillinger in 1974.
F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974)
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Classical Molecular Dynamics (MD)

The objects described by Molecular Dynamics (MD) are particles
(atoms, molecules, polymers) represented as deterministic variables
having positions and velocities.

The Cartesian positions (x1,y1,z1),…,(x N,yN,zN) of a system of N
particles can be denoted by RI = (xI,yI,zI) where I = 1,…,N

These particles interact via a given function of the positions RI, the 
potential V(RI). The forces fI on each particle are simply the
gradients (derivative) of this potential,

I

I
I

V
R
Rf




=
)(

and the analytical 3xN dimensional function fI is called force field
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MD Simulations: how to construct a Force Field?
We need to consider all the relevant motions of the system 

that we want to study

intermolecular
interactions

intramolecular
nonbonded
interactions

torsion

bond stretch

bending

20
2
1 )(),( IJIJIJIJIJ rrkkrv =

20
2
1 )()(   = IJKIJK kv

v(fIJKL)
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Typical form of a classical potential (not unique):
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Bond stretching

Bond bending

Torsion angles

Coulomb interaction

Van der Waals
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MD Simulations: How do we get the parameters
kIJ, kq, etc… for the force field ?

From experiments
molecular and bulk properties
X-ray / neutron scattering structure factors
isotopic substitutions, etc…

From ab initio calculations
molecular and cluster properties 
static geometry optimization (minima, saddle points)
first principles methods
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Motion of Particles as Point-like Objects

Atoms are generally not fixed at a given position RI, but they
move due to e.g finite temperature T > 0 K, collisions, external
fields, etc…so they are rather described by dynamical variables 
RI(t). The evolution of RI(t) for each atom I=1,…,N is described 
in analytical mechanics by a Lagrangean(*)

( ) ( )I

K

I
IIII VMVKL RRRR == 

=1

2

2
1, 

(*) after Joseph Louis Lagrange, Torino (Italy), 1736-
1813. See Mechanique analytique and Miscellanea 
Taurinensia, 1766-1773 (5 volumes).
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The Euler-Lagrange equations give us the 
equations of motion (EOM) of Classical MD

The atoms move from a position RI(t) to a new position RI(t+dt) 
via standard dynamics:

0=














II

LL
td

d
RR

or, more explicitly, the old good Newton equation

IIII VM fRR == )(

where MI is the mass of the Ith particle of our system moving in
the force field fI
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A quantity often useful in MD formalism and statistical mechanics 
is the momentum pI(t), that in Cartesian coordinates is simply

I
III

LM
R

pR






=

Forces acting among particles are relatively weak compared  to forces 
related to chemical bonds keeping molecules together.  
These are the forces that MD can model.
A good first approximation for particle-particle (atom-atom or 
molecule-molecule) interactions is that they are pair-wise additive,
e.g. particle 1 interacts with particle 2 with a potential (analytic 
Function v(r12) (r12=|R1-R2|), then with particle 3 with v(r13) (r13=|R1-
R3|), etc. in an isotropic way, so that only the relative distance comes 
into play 
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The force on particle I is now a superposition of pair 
forces

 
 

=
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A crucial property of a typical MD system is that the total 
energy is conserved during the motion. Of course, in our 
case, the total energy E is just the sum of the kinetic, K,
and potential, V, parts 

HVMVKE III

N

I
== 

=

)(
2
1 2

1
RR

H is the Hamiltonian(#) of the system. 
(#) after William Rowan Hamilton, Dublin (Ireland), 1805-1865
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The Hamiltonian of the system is constant of motion, 
which means

0=
td
Hd

if the force field fI(x) can be expressed as (minus) the 
gradient of a potential function V(RI)

)( II V Rf =
as always happens in classical and quantum dynamical 
simulations.
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The proof is indeed rather trivial, because we know the EOM

so, we have simply to compute the time derivative of the hamiltonian

=== 
==

N

I
III

N

I
IIM

td
dV

td
dK

td
Hd

11
RfRR 

thus, the Hamiltonian H is indeed a true constant of motion and 
represents one of the parameters to be monitored and controlled
during a MD simulation.

IIII VM fRR == )(

0)(
1

== 
=

II

N

I
IIM RfR 
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Numerical integration of the EOM: Verlet algorithm

To solve numerically the EOM, the first step is a discretization
of the time t in terms of small increments called time steps of
(arbitrary) length dt. The system then passes across a set of time
ordered configurations … RI(tm-1)             RI(tm)             RI(tm+1) … 

separated in time by dt = tm-tm-1 = tm+1-tm = … 
An easy but successful integrator in MD is the Verlet algorithm;
if we make a Taylor expansion of RI(t+t) and RI(t-t) we get

( )4
32
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6

)(
2

)()()( tOttt
M
tttttt II

I
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We use the standard notation

By simply summing up the two Taylor expansions, we get

( )4
2

)()()(2)( tOt
M

tttttt I
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III  = fRRR
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t
t III 


= RRv

IIIIII RbRaRv  === ,,

III M af =

and this has an accuracy which is third order in time.
The velocity results, in a similar way, as

This expression may be a bit inconvenient, because we need the
position at t +t to compute the velocity at t. We can then rewrite 
the Taylor expansion keeping up to the second order (force) term

and the EOM
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From the advanced position we compute the force at time t+dt
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Then we substitute in the Taylor expansion t t+t (backward)
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and we finally obtain the forward prediction for the velocity

(velocity Verlet
algorithm)
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Note that we are solving second order EOM, thus we need two
initial conditions:  

 )(),0( tII RR

   )0(),0()0(),0( IIII vRRR 

positions of the particles at t = 0 and the subsequent time step t = t
or 

positions and velocities at t = 0. 

Exercise 1: Demonstrate the equivalence of Verlet and velocity Verlet
algorithms (hint: eliminate the velocity from the above)

Exercise 2: Write a Verlet or velocity Verlet (the one you prefer)
formula for the 1-dim harmonic oscillator V(r) = k r2 /2
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Special features of the Verlet algorithm(s):

   )(),()(),( tttttt IIII   vRvR

• Algorithm is time reversible. Propagate the system forward

then change the sign of the velocity and propagate over another
time interval  t

and we are back at the starting position.
• Algorithm shows a very good total energy conservation
• Updating of velocity is always one step behind updating of position

   )(),()(),( tttttt IIII vRvR  

Computational cost in MD:
The calculation of forces is by far the most demanding in terms of
CPU time (memory is in general not a problem)  
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General scheme of a computer code for MD:

Provide initial atomic coordinates RI(t) and select t

Compute forces: fI = - ∂V(RI)/∂RI

Move atoms:
)(

2
)()()(

2

t
M
tttttt I

I
III fvRR  =

Move time forward: t → t + t
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Thermodynamic control methods: 
Constant temperature (I)

From a statistical mechanics point of view, the temperature T of a
system of particles having masses MI and moving with velocities vI
is simply given by the average

TkNM
B

N

I

II =
= 2

3
21

2v

It seems than that if we can control in some way the velocities vI
then we can keep under control the related parameter T. 
From statistical mechanics textbooks, we know that this control is 
operated by a thermostat, ideally a system with infinite degrees of 
freedom in contact with our system of particles and acting as a heat 
reservoir.
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Thermodynamic control methods: 
Constant temperature (II)

An original idea of S. Nosé, extended by 
W.G. Hoover, was that we do not really 
need infinite degrees of freedom, but only 
one. 
This additional degree of freedom takes care of the proper scaling of 
the velocities, reproduces the canonical ensemble (N,V,T) and reduces 
the problem of the thermostat to deterministic dynamical equations.

This single degree of freedom, s, does a rescaling of the velocities vI
during the simulation,

and is similar to a friction force fc
I = -spI if s > 0 or to a heating-up 

process if s < 0.

III s vvR =
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Thermodynamic control methods: 
Constant temperature (III)

The simplest realization is the velocity rescaling: Multiply all the 
velocities of any particle by a factor, s

calculated by enforcing the total kinetic energy K to be equal to the 
kinetic energy K0 at the target temperature T

Nf = number of degrees of freedom.

Problem: All velocities / momenta are rescaled by 

thus affecting the momenta and hence not conserving the 
Hamiltonian … 

II s vv 

Tk
N

K B
f

20 =

K
Ks 0=
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Thermodynamic control methods: 
Constant temperature (IV)

The average target temperature is 
granted by the rescaling but the non-
conservation of the Hamiltonian makes 
the system non-canonical

H …  H’
e-H/kT e-H’/kT
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Thermodynamic control methods: 
Constant temperature (V)

…and the system becomes non-ergodic ! Simple example: harmonic oscillator

Without rescaling                                                      With rescaling

const
222

1
2
1 2
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== qpxv m
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kmH

p                                                            p

q                                                           q
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
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= qp m
m

H const
22

2
22







= qp m
m

sH

H  sHH
s
rnd
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Thermodynamic control methods: 
Constant temperature (VI)

A possible modification to the scaling algorithm is to enforce the 
canonical distribution by selecting a target kinetic energy Kt with a 
stochastic procedure, i.e. randomly sampled from 

The velocity rescaling factor becomes then

although velocities undergo again abrupt changes at each rescaling

see J. Chem. Phys. 126, 014101 (2007)

( ) ( )
t

Tk/K/N
ttt dKeKdKKP Btf  = 12

K
Ks t=
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Thermodynamic control methods: 
Constant temperature (VII)

…But: The new degree of freedom s can be added to the Lagrangean 
of the MD as a new variational (dynamical) variable s(t). 
The extended Lagrangean then reads

The new variable s(t) has a kinetic term in which Q represents the 
fictitious mass, basically the time scaling of the motion of s(t) with 
respect to the motion of RI(t). The velocities are rescaled as svI and 
the virtual potential for s(t) is given by the Boltzmann-like canonical 
term (3N + 1) kBT ln s, where 3N +1 are all the degrees of freedom: 
3N for the atomic coordinates plus one for the new variable s.

( ) sTkNsQVsML BI

N

I
II ln)13(

2
1

2
1 2

1

22 = 
=
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Thermodynamic control methods: 
Constant temperature (VIII)

Upon Legendre tranformation, 

the extended Hamiltonian then reads

and this is our new constant of motion 
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Thermodynamic control methods: 
Constant temperature (IX)

The (coupled) Euler-Lagrange equations of motion, under the 
rescaling of the Nosé-Hoover thermostat become then 

II
I

II M
s
s

s
M RfR  22 =







= 

=

N

I
BII TkNMs

s
sQ

1

2 )13(1 2R

and these can be solved numerically with the Verlet algorithm. Note 
that now we have two more input parameters: the target temperature 
T and the Nosé-Hoover thermostat mass Q.
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Thermodynamic control methods: 
Constant temperature (X)

The choice of the Nosé-Hoover thermostat mass Q and of the target temperature T
is equivalent to the choice of a characteristic frequency at which the thermostat 
oscillates because of the 2nd order EOM: 









= 

=

N

I
BII TkNMs

s
sQ

1

2 )13(1 2R
( )

2
132

sQ
TkN B

=

weak coupling with the ionic normal modes           good control of T
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Thermodynamic control methods: 
Constant temperature (XI)

• Why does such an approach give a canonical ensemble ?
The partition function of the system becomes:

Then, rewriting the scaled momenta

we get

( ) 














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Thermodynamic control methods: 
Constant temperature (XII)

Using the relationship                                             , s0 being the zero 
of f(s0), we arrive at 

which means that, apart from a constant C the partition function is the 
one of a canonical (Boltzmann-like) ensemble:
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Thermodynamic control methods: 
Constant temperature (XIII)

Warning: For particularly pathological systems the Nosé-Hoover 
thermostat suffers from non-ergodicity problems.
A possible way of overcoming the problem is to use a chain of 
thermostats: s1, then s2 controlling s1, …, sk controlling sk-1 
(k=2,…, K)

IIIII sMM RfR 1
 =

211
1

2
11 )13(1 ssQTkNM
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I
BII  
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

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
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11 

Martyna, Klein and Tuckerman J. Chem. Phys. 97, 2635 (1992)
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Thermodynamic control methods: 
Constant pressure (I)

The extended Lagrangean method was originally introduced by H.C. 
Andersen to control the pressure of a system in a box                . In 
this case, the new Lagrangean variable is represented by the volume
W and we have

For convenience, the atomic coordinates RI are rewritten as

( ) WW= 
=

0
2

1

22

2
1

2
1 PQVML I

N

I
II

 rr

/II Rr =
so that the rI variable are not directly related to the volume. W is 
then a completely independent dynamical variable.

 
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Thermodynamic control methods: 
Constant pressure (II)

The Euler-Lagrange equations of motion for the particles rI and the 
volume W read

IIIII MM rfr 





W
W

=
3
21

0PPQ =W

where the fictitious mass parameter Q and the external pressure P0
are now the two new input parameters. The quantity P, instead, is 
the dynamically computed pressure given by

( ) 
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

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
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W
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I
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3
1
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Thermodynamic control methods: 
Constant pressure (III)

The constant pressure method was generalized by M. Parrinello and 
A. Rahman to the non isotropic case.* The position RI of a particle is 
given in terms of lattice vectors a,b,c as 

where h is the matrix representation of the lattice vectors, i.e.
h = (a, b, c) and its transpose

so that  RI
2 = xI hT h xI  and

*Phys. Rev. Lett. 45, 1196 (1980)
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Thermodynamic control methods: 
Constant pressure (IV)

The Parrinello-Rahman Lagrangean reads then

( ) ( ) W= 
=

0
1

Tr
2
1

2
1 PQVML T

II
T

N

I
II hhRxhhx 

)( cba =Wwhere the volume. W is now given by
In the special case in which h is diagonal, we have the Andersen 
barostat:


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

W
W

W
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3/1
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h

although the Andersen’s equation of motion for d2W/dt2 cannot be 
obtained in a straightforward way.
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Thermodynamic control methods: 
Constant pressure (V)

For convenience, the matrix product G = hTh is introduced

so that the square of the distance between two atoms, I and J reads


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


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and the reciprocal space vectors become
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Thermodynamic control methods: 
Constant pressure (VI)

I
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The Parrinello-Rahman equations of motion then read

( )σh 0PPQ =

where the pressure P is given by
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Thermodynamic control methods: 
Constant pressure (VII)

The Parrinello-Rahman method for the control of pressure can be 
further generalized by including an external stress tensor, i.e. the 
case in which an anisotropic pressure is applied or anisotropic 
structural modifications occur

In this case, the former Lagrangean is modified as 

( ) 3,2,1, == sS

( ) ( ) Gh1Sh W
 1

0
1Tr

2
1 TPLL
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Some nomenclature of the thermodynamic 
ensembles that can be simulated 

• (N, V, E) constant → microcanonical ensemble
• (N, V, T) constant → canonical ensemble

in this case, the distribution of each state i characterized by an 
energy Ei is a Boltzmann pi = (1/Z) exp (- Ei / kBT) and the 
system can exchange energy (but not particles) with a reservoir

• (m, V, T) constant → grand canonical ensemble: much more 
difficult to simulate since it is an infinite collection of canonical 
ensembles

( )TkEzTVNZzTVZ i
N

N

N

N
B

00
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=
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=

m

zTk lnB=m



49

What can we get out of a MD simulation ?

• Dynamical averages = statistical averages of several physical 
quantities: total and free energy, molecular velocity 
distributions, etc.

• Radial distribution function / pair correlation functions gij(r) 
and angular distribution functions

• Temperature, pressure (stress tensor), crystal and non-crystal 
phases, local atomic structure, etc…

• Diffusion coefficients
• Vibrational spectra and normal modes
• etc…

Let’s see each point one by one and how we can extract these
data from a MD trajectory.
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Connection to Statistical Mechanics: 
time averages and ensemble averages

A successful MD run gives you, in output, a time-ordered sequence
of positions RI(tm) and velocities vI(tm) at the discrete time points
tm = mt, m=1,…,M for a total simulation time Dt = M t.

We call this sequence trajectory and the trajectory represents the set 
of configurations “visited” by our system during the dynamics, i.e. 
during its motion under the action of the force field that you selected.

So, what do we do with such a sequences of numbers ?

We can use this discrete trajectory to visualize the motion of the 
particles on most of the graphical PCs, workstations…
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…so, what do we see on our computer ?

Example: the case of water at T = 300 K (temperature control)
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Connection to Statistical Mechanics: 
time averages and ensemble averages

…but this is just a visual inspection (= no or very little science). 
In the end we want always to compute ensemble averages or, within 
the ergodic principle, time averages of some function A(RI(t),vI(t)) 
of the positions and velocities, or, equivalently A(RI(t),pI(t)) of the 
positions and momenta whose average value is a quantity that can be 
measured experimentally.

Ergodic principle: if the dynamics is long enough so that our system 
can explore its whole phase space {RI,pI}, then time averages are 
identical to ensemble averages, which means, if
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Connection to Statistical Mechanics: 
a trivial example – Temperature

Suppose that we have run a MD simulation for a time long enough to 
have a good sampling of the phase space., which means a long series 
of positions and velocities {RI(t),vI(t)}, then we have
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and, in our MD language,
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Connection to Statistical Mechanics: 
another trivial example – Total Energy

From our MD simulation we can compute also the (classical) total 
energy in a similar way:

( ) VTNktVtMEE B
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Connection to Statistical Mechanics: A WARNING

Why even in an (e.g.) NVT canonical system does the temperature 
oscillates ?

…it should be
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Connection to Statistical Mechanics: A WARNING

…not really: A many-body system is not an “infinite-body” system !

= NN
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…running average: we have to wait (ergodicity)
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Connection to Statistical Mechanics: 
static properties

If our system has an average density r (r = 1 g/cm3 for H2O), this
density fluctuates as a function of the distance from a given point…

The density at a given radial distance r depends on whether or not
another particle is present at r and is a measure of the structure of the 
system (crystal, liquid, etc…). The adimensional function g(r) is 
called radial distribution function and must be zero at r = 0 because 
two particles cannot occupy the same place, and it is also clear that

1)(lim =


rg
r

r (r) = r g(r)

because if we consider all the volume of the system, r(r) = r .
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Connection to Statistical Mechanics: 
static properties

From a MD trajectory : ( )


=
N

JI
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N
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r
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where, rIJ = |RI(t)-RJ(t)| and the ensemble average is of course the 
time average. The radial distribution function is related to the static
structure factor S(k) by a simple Fourier transform
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and S(k) is the quantity measured in X-ray or neutron scattering
experiments (k = 4p sin(q/2)/lin). And the bulk pressure is







=
0

3
2

)()(
3

2 drrrg
r
rVTkP B

rr

from the virial theorem, where V(r) = MD potential.
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Connection to Statistical Mechanics: extracting 
properties from simulations

Summarizing:
static properties
such as structure, 
pressure etc.. are 
obtained from g(r) 
pair (radial) 
distribution 
functions

O-O

H-H

O-H



60

Connection to Statistical Mechanics: 
dynamic properties

The dynamics of the system can be measured from the displacement
of its particles in time or, equivalently, from the velocities. An easy
quantity to compute is the mean square displacement (MSD)
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In general, for a solid DR2(t) is small and almost constant in time 
(non-diffusive regime). For a liquid or a gas, instead, it grows almost 
linearly (diffusive regime)
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Connection to Statistical Mechanics: 
dynamic properties

The velocities provided by the MD can be used in a mathematically
equivalent way since
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Connection to Statistical Mechanics: 
dynamic properties

The quantity

is called velocity autocorrelation function and is useful also to 
compute the vibrational spectrum of the system
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as a simple Fourier transform from the time domain to the frequency
domain. 



63

Connection to Statistical Mechanics: 
dynamic properties - Vibrational spectrum of water 

bending

stretching
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Summarizing:
dynamic and 
transport properties
are obtained from 
time correlation 
functions

Connection to Statistical Mechanics: 
extracting properties from simulations

MD (good) 
simulation

Experiment

2.8 0.5 2.4

Example: self diffusion coefficient of 
water

D (x10-5 cm2/s)


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Example of pressure control: 
Parrinello-Rahman simulation of H2S phases

R. Rousseau, M. B., M. Bernasconi, M. Parrinello and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000)

P = 35 GPa P = 65 GPa

S
H
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Parrinello-Rahman simulation of H2S phases: 
What can we say (compute) ?

A
bs

or
pt

io
n 

sp
ec

tru
m

The absorption spectrum computed from the trajectories of 
the two phases at different pressures can be directly compared 
to experiments.
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Parrinello-Rahman simulation of H2S phases: 
What can we say (compute) ?

The phase diagram of the energetics vs. applied pressure 
gives the relative stability of each structure at different 
thermodynamic conditions.
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Parrinello-Rahman simulation of H2S phases: 
What can we say (compute) ?

• Simulations provide an atomic-level model of H2S structures 
at different pressures.
• The absorption spectrum, in agreement with experiments, 
provides an indirect validation of the atomic-level picture not 
accessible to experimental probes.
• Phase V is characterized by SH3

+ and SH- species dynamically 
formed and destroyed
• Phase VI is no longer a molecular phase but sheets of S with H 
intercalated between S layers
• The relative stability of the two phases depends on the 
thermodynamic conditions
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Suggestions for further readings:

• Understanding Molecular Simulations, From Algorithms to Applications, 
D. Frenkel and B. Smit, Academic Press, San Diego, 1996 
• Computer Simulation of Liquids, M. P. Allen and D. J. Tildesley, Clarendon 
Press, Oxford, 1987
• An Introduction to Computational Physics, T. Pang, Cambridge University 
Press, Cambridge, 1997
• http://www.fz-juelich.de/nic-series/volume23/volume23.html

(freely downloadable)
•S. Nosé, Mol. Phys. 52, 255 (1984)
•S. Nosé, J. Chem. Phys. 81, 511 (1984)
•W. G. Hoover, Phys. Rev. A 31, 1695 (1985)
•H. C. Andersen, J. Chem. Phys. 72, 2384 (1980)
•M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980)
•M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981)


