Development of adsorbent materials (catalyst support) for CO₂ capture and conversion. **DIRECTEUR DE THESE**: SIMONA BENNICI Institut de Science des Materiaux de Mulhouse, 3 rue A. Werner, 68093 MULHOUSE CEDEX Tel: 03 89 33 67 29; e-mail: simona.bennici@uha.fr Over the last two centuries, world energy demand has increased dramatically as a result of population growth and industrialization [1]. Today, nearly 80% of these needs are met through carbon-containing fossil fuels that increase CO₂ emissions. Human-made CO₂ emissions should be limited to reach the ambitious targets set by the Paris Agreement and the EU's 2030 Climate and Energy Framework. Carbon capture and storage (CCS), for example by adsorption onto basic solid materials or injection of CO2 in undersee caves, have been and are going to be used to palliate CO₂ emissions from largescale industrial processes. While CCS technologies have the potential to reduce CO2 emissions from conventional generating stations by 80 90%, their cost-effectiveness is limited by the necessity of transporting compressed CO2 gas and storing it in geological formations. An alternative strategy to CO₂ storage is the "carbon capture and utilization" (CCU) process, in which CO₂ is utilized as a raw material and catalytically converted into hydrocarbons, such as methane and methanol [2]. Recently, an integrated CO₂ capture and utilization (ICCU) process, by which CO₂ is first captured and then catalytically hydrogenated into a chemicals or fuel in a single fixed bed reactor under isothermal conditions, has aroused considerable interest [3,4]. In both processes, the development of new solid materials (or catalyst supports) capable of adsorbing and releasing CO₂ at relatively high temperature is crucial. Several technical challenges related to the low adsorption capacity and the poor durability after multiple sorption/desorption cycles, remain to overcome. In this project, CO_2 adsorbents as clay materials, modified hydrotalcites, mixed oxides, and MgO/BaO- containing composites, will be prepared and fully characterized. Studies on the CO_2 adsorption, in terms of capacity and strength of interaction, on the different materials will be also performed to select the samples capable to store CO_2 and then release it for feeding the hydrogenation reaction at the target temperature. Deep investigations by XPS and thermal analysis will be performed to identify the type and strength of the adsorption sites, and the CO_2 adsorption/desorption capacity at high temperature (>250 °C). - [1] IEA. Energy Technology Perspectives 2020-Clean energy technologies the state of play, (2020). https://www.iea.org/reports/energy-technology-perspectives-2020 (accessed November 25, 2020). - [2] H. Yang, C. Zhang, P. Gao, H. Wang, X. Li, L. Zhong, W. Wei, Y. Sun, A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons, Catal. Sci. Technol. 7 (2017) 4580–4598. doi:10.1039/c7cy01403a. - [3] D. Allam, S. Bennici, L. Limousy, S. Hocine, Improved Cu- and Zn-based catalysts for CO₂ hydrogenation to methanol, Comptes Rendus Chim. 29 (2019) 227–237. doi:10.1016/j.crci.2019.01.002. - [4] I.S. Omodolor, H.O. Otor, J.A. Andonegui, B.J. Allen, A.C. Alba-Rubio, Dual-Function Materials for CO₂ Capture and Conversion: A Review, Ind. Eng. Chem. Res. 59 (2020) 17612–17631. doi:10.1021/acs.iecr.0c02218. - [5] P. Melo Bravo, D.P. Debecker, Combining CO₂ capture and catalytic conversion to methane, Waste Dispos. Sustain. Energy. 1 (2019) 53–65. doi:10.1007/s42768-019-00004-0.