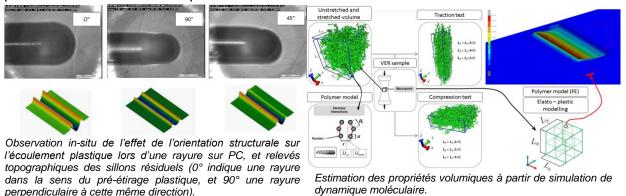
MECANIQUE DU CONTACT GLISSANT SUR SURFACES DE POLYMERES A RHEOLOGIE PLASTIQUE ANISOTROPE

DIRECTEUR DE THESE : Christian GAUTHIER


INSTITUT CHARLES SADRON, 23 rue du Loess, BP 84047, 67034 STRASBOURG Cedex 2.

TEL: 03.88.41.40.85; E-MAIL: christian.gauthier@ics-cnrs.unistra.fr

CO-ENCADRANTS DE THESE: Marina PECORA (MdC) et Mathieu SOLAR (MdC)

Les polymères amorphes et semi-cristallins ont la capacité d'avoir leurs structures moléculaires orientées par étirage mécanique. Si les propriétés mécaniques volumiques induites par cette orientation structurale ont été étudiées, la compréhension du lien entre structure et propriété tribologique est encore lacunaire. Des travaux expérimentaux ont montré qu'un étirage pouvait permettre d'avoir une résistance à la rayure plus importante dans le sens transverse par rapport à une rayure dans le sens de l'étirage, tout en ayant un coefficient de frottement apparent plus important. L'anisotropie plastique, observée expérimentalement insitu, permet d'expliquer ce comportement. Ce sujet de thèse vise dans un premier temps à mieux cerner expérimentalement les comportements volumiques et surfaciques en rayure de certains polymères amorphes orientés et bi-orientés. Des essais volumique (traction compression et cisaillement) sur les matériaux orientés et bi-orientés permettront d'alimenter un code numérique, et les observations surfaciques de valider les résultats de ce modèle numérique. Le candidat prendra en main un modèle numérique de rayure déjà développé pour optimiser les fonctionnalités de régénération de maillage pour des simulations de rayure sur des matériaux anisotropes (logiciel MSC Marc-Mentat©), puis réaliser un plan d'essais numériques pour différentes géométries de pointe et de frottement interfacial. A partir des estimations des rayons de giration et des taux d'enchevêtrement des molécules de polymère, des outils de dynamique moléculaire précédemment développés pour estimer les propriétés d'un volume élémentaire représentatif isotrope seront utilisés pour estimer les ratios des propriétés volumiques de ces matériaux anisotropes pour les différentes orientations. L'enjeu est d'alimenter plus finement les modèles numériques de rayure en données matériaux, en complétant celles issues des essais.

Ce sujet s'adresse à un candidat motivé par des essais mécaniques et ayant des aptitudes pour la modélisation numérique.

- Influence de l'orientation moléculaire du Polyéthylène haute densité par étirage mécanique sur le comportement mécanique de surfaces, Nan YI, Doctorat Université Strasbourg, Juillet 2019.
- Anisotropic yielding of injection molded polyethylene: Experiments and modeling, Polymer Volume 54, Issue 21, 4 October 2013, Pages 5899-5908.
- Experimental Investigations on the Induced Anisotropy of Mechanical Properties in Polycarbonate Films, ISRM Materials Science, Volume 2013 Article ID 649043.
- Mechanical behavior of linear amorphous polymers: Comparison between molecular dynamics and finite-element simulations, Phys. Rev. E 85, 021808 27 February 2012.