Introduction to Numerical Simulations and
High Performance Computing: From
Materials Science to Biochemistry

UNIVERSITE kaas BBBBB Ma«uro Boero @

> 4 EQUIP@MESO
O ., Institut de Physique et Chimie des Materiaux de Strasbourg

@
Z/;ézo University of Strasbourg - CNRS, F-67034 Strasbourg, France

~ “ \ L}

A 4 " I
A, . \ * ¢ o g
. e R

Post K computer i (0 4 . ¢

) YT S LR B N Y) .) L

g 4 : 3 N C»’-‘ Computational Materials Science Initiative
™ U . oo BiLetReeve e

plied Physics, The University of Tokyo,

o £ e 2% @ Dept. of Ap
Lfﬁ_’ THEUN[VE:SITYOFTOKYO 7—3-1 HOVlgO, TOkyO 113-8656, Japan

Part 7/:

Brief overview of HPC architectures
and parallel programming

Outline

High Performance Computing (HPC): Massively
parallel machines and CPU/GPU achitectures

Parallelization strategies: MPI/OMP & Co.

Practical example of implementation: numerical

scheme, basis set, direct space and Fourier transform
& Co.

Example performance and speedup (QM & QM/MM)

High Performance Computing (HPC) nowadays

Tier () Leadership Teraflop '\ 100s of Teraflops

Class Class
Large-scale campus/ Tier 1
commercial resources, / Centre Supercomputers 10s of Teraflops
supercomputers
: Tier 2
Meduum-sca.le CRmpUy/ 1s of Teraflops
commercial cluster
Super-clusters / Mesocenters
Tier 3
10s of Gigaflops

Small-scale desktop High performance workstations

High Performance Computing (HPC): Brief History

* John von Neumann (Manhattan Project) programmed the first algorithm
on ENIAC (Electronic Numerical Integrator And Computer)
* ENIAC was designed to calculate artlllery ﬁrlng tables for US Army’s

ballistic research (1946)

Nowadays
ENIAC@IPCMS e R =

High Performance Computing(HPC): Brief History

Ken Wilson, a Nobel Laureate physicist at Cornell,
wrote a white paper in the early 1980’s on the need of
the scientific community for supercomputing

a) He described machines that would be able to
(.(.thi 29

(1) The “Gibbs keyboard” - 1 key, “read my mind”
b) The physics community got behind this proposal
and “pushed”

J—

Source: http’www.mrynet.com/cray/docs.himl Source: hitpZAwww _bobndenise.comicomputers/computer.htm

1985 Cray-2 IBM 3090

Example: of modern Machines:

HPC @ IPCMS (ENIAC)

* 896 Cores network architecture with
Infiniband interconnection

* Front Quad Xeon 8 GB RMA + 64
dual processor compute nodes Quad
Xeon - 32 GB RAM

» Scalable network infrastructure to
Gigabit Ethernet, storage > 20 TB

Equip@Meso

. Hybdrid CPU/GPU NEC
HPC1812Rd-2/GPS12G4Rd-2

* 145 nodes = 2320 Computing cores
(Mellanox Infiniband)

Other available HPC resources in France:

- IBM Blue Gene / Q &

IBM x3750 @ Hris

Earth Simulator & K-Computer (Japan)

& 'ﬁ'}
EAATH EARTH SIMULATOR

EARTH SIMULATOR |-

f‘- The Earth Simulator Is utllized In varlous
| flelds of research Including earth sclences
for such tasks as global-warming projection

and solld earth Interler dynamics research.

G PELRE %5 B RS

niKsH A Advanced Institute for Computational Science

©RIKEN

About parallel programming:

MPI (Message Passing Interface)
https://www.open-mpi.org/
https://www.mpich.org/
https://software.intel.com/en-us/intel-mpi-library

and

OpenMP (http://openmp.org/)

are the major tools to parallelize a computer code

10

ES system configuration

Parallel vector supercomputer system with 640 processor nodes
(PNs) connected by 640x640 single-stage crossbar switches.
Each PN is a system with a shared memory, consisting of

- 8 vector-type arithmetic processors (APs): total=5120 AP

- a 16-GB main memory system (MS)

- a remote access control unit (RCU)

- an I/O processor.

Interconnection Network (fullcrosshar, 12.3GRE% x 2)

Sharesd Memory Shared Memory Shared Memory

LE R A L B B 8

MPI

Arnthmetic Processor #1

Arithmetic Processor #1
Arnithmetic Processor #7

Anithmetic Processor #0
Arithmetic Processor #1
Arithmetic Processor #7

Anthmetic Processor #0
Anthmetic Processor #7
Arithmetic Processor #0

Processor Made #0 Processor Mode #1 Processor Mode #6390

11

ES system : single processor node (PN)

*The overall MS i1s divided into 2048 banks
*The sequence of bank numbers corresponds to increasing
addresses of locations in memory.

OMP

II_..

AT
Bandwidth : 256GB/s

| AAA
Aﬁ?ﬁ# LA

Main Memory System (16GB)
128M bits Full-Pige Line Memory, 2048-way banking scheme

About parallel programming:

What is MPI ?

Is a message-passing interface (library) specification
(basically calls in a computer code)
Is NOT a programming language or computer specification
Is NOT a specific implementation or (commercial) product
Is a package/wrapper to be used within a specific language
Is intended for parallel computers, clusters and
heterogeneous networks
Is designed to provide access to advanced parallel hardware
for

- programmers/developers of codes AND languages

- end users

- library writers

About parallel programming:

Why MPI ?

* MPI provides a “not-so-hard-to-handle” efficient and
portable way to parallelize programs

* It has been explicitly designed to enable libraries...

* ...which may eliminate the actual need for users to
learn MPI

* Yet, it is better to learn MPI if you are a developer
(or you are doomed/fired)

About parallel programming: the Environment

Two major questions arise immediately 1n a parallel

code:

* How many processes (cores/CPUSs) participate to
this computation?

e ...and on which one am I (now)?

MPI has two functions designed to answer these

questions:

Mpi_comm_Size reports the number of processes

mpi_comm_rank reports the rank, a number between 0 and
Nproc-1 identifying the calling process

15

About parallel programming: MPI send/receive

We need to supply the details 1n
Process 0 Process 1
Send(data) — i

Receive(data)

And we need to specify:

 How data will be described

 How processes will be 1dentified

* How the receiver will recognize/screen messages

* What it will mean for these operations to complete
e ...and what to do after receving&computing 1s over

About parallel programming: How does it work?

o D N iﬁ ‘
Process 1 Yes

Time -

Data transfer requires synchronization
Requires cooperation between sender and receiver
..and this 1s not always apparent in the source code

17

About parallel programming: Main tasks are simple
(well... somehow)

* A parallel code uses mainly six basic MPI functions
used as call MPI_...(...)

MPI_INIT ...start mpi procedure
MPI_FINALIZE ...end mpi procedure
MPI_ COMM SIZE ...determines the size of the group

associated with a communicator

MPI_ COMM _RANK ...determines the rank of the calling

process in the communicator

MPI1_SEND ...send
MP| RECV ...receive

* Point-to-point (send/recv) 1s the only way...

About parallel programming: Introduciton to
collective operations in MPI

Collective operations are called by all processes 1n a

communicator

MPI_BCAST distributes data from one process (the parent or
root) to all others in a communicator

MPI_REDUCE combines data from all processes in a
communicator and returns it to one process (the parent or root)
SEND/RECEIVE can be replaced by BCAST/REDUCE
improving simplicity and efficiency

All-to-All (any process communicating with any other one) 1s
the heaviest task/workload (of course)

About GPUs and code(s) performance
Looking back at early ‘90s:

Fastest machines were CRAY's...

— Vector machine

— Fast memory streams vectors through a very fast
Processor

...and Connection Machines

— Massively parallel architecture

— Very many slower processors each compute on one
clement of the result vector.

CPU ??? GPU ?2??

Difference between the core of CPU & GPU

iP-rocess iP-ut in order

21

About GPUs and code(s) performance

The vector machine strikes back

vector computer CM GPU Nvidia®

A modern GPU 1s both a vector machine and a massively
parallel architecture

22

About GPUs and code(s) performance

Pros Cons

Fast Specialized

Cheap Hard to program (efficiently)
Low-power Bandwidth problems
Compact Rapidly changing (need for

continuous recoding)

Future 1s streaming anyway?.... Or not?

Example of GPU programming on NVIDIA

e GeForce Quadro, Tesla, Mobile : Tegra, Cloud : GeForce GRID VGX

e 2011-Tegra2, 2012-Tegra3, 2013-Tegra4, 2014-TegraK1 Logan, 2015-Parker

* GPU generation: 2008-Tesla, 2010-Fermi, 2012-Kepler, 2014-Maxwell (next: Volta)
Doubling the computing power at each new generation.
Purpose: Power efficiency, Ease of programming, large application coverage.
More calculations per consumed Watt

Programming: NVIDIA @ Portland (PGI-Fortan & C++)

Good points: vector-matrix & matrix-matrix operations, pointers handling

Weak points: FFT and communication speed for massively parallel applications

OpenACC: Generalization of OpenMP. (Not sure if better than OMP 4.0)

OpenMP example OpenACC example
ISacc data copy(A), create(Anew)

ISOMP parallel do private (i,j) ISacc kernels
doi=1,... doi=1,...
doj=1,... do j=...

Anew(i,j)=...Ali,j) Anew(i,j)=...Ali,j)
enddo enddo
enddo enddo
ISOMP parallel end ISacc end kernels

ISacc end data

24

Which calculations?

» Standard example: Schrodinger/Kohn-Sham/Dirac/whatever
quantum mechanics formulation (non #-dependent)

Hy, (X) =Ly, (X)
* Simple basis set case: orbitals in plane waves

YA(X) = 2 ¢(G) el
* G are the reciprocal space vectors. The Hilbert space spanned
by PWs is truncated to a suitable cut-off £ such that
G2 /2 < [eut

Plane wave expansion: y(x) = 2 c(G) e/G¥

For each electron i=1,...,N , G=1,...,M are the reciprocal space
vectors. The Hilbert space spanned by PWs is truncated to a
cut-off G, >/2 < E™

R space — G space

cut
E1

cut cut
E,®ut> E,

(3¢

26

Plane wave expansion: y(x) = 2 c(G) e'G¥
R space > G space

(v,(000) [¢(000)
v,(1,0,0) ¢,(1,0,0)
v(X)=| . lree clg)= ec

\Wi(Nx’Ny’NZ)) \Ci(NGX’NGy’NGZ))

t

Double-precision floating-point format

From Wikipedia, the free encyclopedia

Double-precision floating-point format is a computer number format that pccupies & bytes (64 bits)jin computer memory and represents a wide,
dynamic range of values by using a floating point.

Typical calculation with ~500 atoms: N, x N, x N, = 3500000

27

G space
c(G) N*FFT
1
26 ¢(G) G* {E
VNL(G) {ENL}
G - FFT
1
Vee(G) + Vi G) {E+Ey;
= V,/(G) &l
1 N*FFT
Viocd(G)ei(x) *
+ VY(G) + I ¢(G) G2
°L_ fe(G)

5¢,(G)

R space

wi(x)

y

piX)

VilX) {Ey)

» Vi H(X)

= ViodX);
ViodX) w(x)

Wi>}

‘A

28

Practical implementation

G=1,....M (loop on reciprocal vectors) distributed 1n a

parallel processing in bunches of M/(nproc) or via
MPI or hybrid MPI+OMP

i =1,....,N (loop on electrons) distributed (MPI / OMP)
k =1,...,Ny, (loop on k-points) distributed (MPI /
OMP)

I=1,....,N,,,.. (loop on atoms) distributed (MPI /
OMP), particularly useful in QM/MM simulations
where MM ~ O(N)

Parallel FFT: your own or libraries, e.g. fftw3 as in
http://www.fftw.org/

29

10% |

102

MPI workload distribution for CPMD

Performance on M of threads

317R.0
i G‘
. 801.0
n\
- 608 atoms
65K 262K 1.6M 3.1M 6.3M
number of threads
MPI_Allreduce
MPI_Barrier
0,
MPl_Bcgéi
4%

CPU time / simulation step (s)

oy
by
(=}

32.0

_
*
=

Performance on IBM BG/Q

1008 atoms

|
2048

4096

Number of CPUs

MPI_Others

2%

MPI_Alltoall
83%

30

Seconds / Simulation Step (s)

Scaling for a full QM system (B-cellulose) @ IBM-BG/Q

20 I | I] I | I | I | I | I [I | I | I
2048 cores (512 MPI x 4 OMP) |

e
N
I

- 336 atoms

| —
-

n

1008 atoms]

Number of Atoms

| | 1
200 300 400 500 600 700 800 900 1000 1100 1200

31

Scaling for a full QM system (B-cellulose) @ IBM-BG/Q
- l ' |

1008 atoms
3072 electrons
450124 PWs

o)

=

=
I

320

CPU time / simulation step (s)
o
o
|
|

| 1 |

|
4096
Number of CPUs 32

|
2048

Thank you for your attention

ZiHHEDH DB L 5 T3

id

Vielen Dank fur Ihre Aufmerksamkeit

Merci de votre attention

Grazie della vostra attenzione
Evyopiotw yio tyv tpocoyn oog

Ao A= FYU T

33

