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Part 7: 
Brief overview of HPC architectures 

and parallel programming



Outline

• High Performance Computing (HPC): Massively 
parallel machines and CPU/GPU achitectures

• Parallelization strategies: MPI/OMP & Co.
• Practical example of implementation: numerical 

scheme, basis set, direct space and Fourier transform 
& Co.

• Example performance and speedup (QM & QM/MM) 
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High Performance Computing (HPC) nowadays
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High Performance Computing (HPC): Brief History

• John von Neumann (Manhattan Project) programmed the first algorithm 
on ENIAC (Electronic Numerical Integrator And Computer)
• ENIAC was designed to calculate artillery firing tables for US Army’s 
ballistic research (1946)

Nowadays 
ENIAC@IPCMS 
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High Performance Computing(HPC): Brief History



Example: of modern Machines:

HPC @ IPCMS (ENIAC)
• 896 Cores network architecture with    
Infiniband interconnection
• Front Quad Xeon 8 GB RMA +  64 
dual processor compute nodes Quad 
Xeon - 32 GB RAM
• Scalable network infrastructure to 
Gigabit Ethernet, storage > 20 TB

Equip@Meso
• Hybdrid CPU/GPU NEC

HPC1812Rd-2/GPS12G4Rd-2
• 145 nodes = 2320 Computing cores 

(Mellanox Infiniband)
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Other available HPC resources in France:

- IBM Blue Gene / Q & 
IBM x3750 @

- BULL Cluster @

- CURIE cluster @
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Earth Simulator & K-Computer (Japan)



About parallel programming: 

MPI (Message Passing Interface) 
https://www.open-mpi.org/
https://www.mpich.org/
https://software.intel.com/en-us/intel-mpi-library

and 

OpenMP (http://openmp.org/)

are the major tools to parallelize a computer code
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ES system configuration
Parallel vector supercomputer system with 640 processor nodes 
(PNs) connected by 640x640 single-stage crossbar switches. 
Each PN is a system with a shared memory, consisting of 
- 8 vector-type arithmetic processors (APs): total=5120 AP
- a 16-GB main memory system (MS)
- a remote access control unit (RCU)
- an I/O processor. 

MPI
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ES system : single processor node (PN)
•The overall MS is divided into 2048 banks 
•The sequence of bank numbers corresponds to increasing 
addresses of locations in memory.

OMP
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About parallel programming: 
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What is MPI ?
• Is a message-passing interface (library) specification 

(basically calls in a computer code)
• Is NOT a programming language or computer specification
• Is NOT a specific implementation or (commercial) product
• Is a package/wrapper to be used within a specific language 
• Is intended for parallel computers, clusters and 

heterogeneous networks
• Is designed to provide access to advanced parallel hardware 

for
- programmers/developers of codes AND languages
- end users
- library writers



About parallel programming: 
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Why MPI ?

• MPI provides a “not-so-hard-to-handle” efficient and 
portable way to parallelize programs

• It has been explicitly designed to enable libraries…
• …which may eliminate the actual need for users to 

learn MPI
• Yet, it is better to learn MPI if you are a developer 

(or you are doomed/fired)



About parallel programming: the Environment
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Two major questions arise immediately in a parallel 
code:
• How many processes (cores/CPUs) participate to 

this computation?
• …and on which one am I (now)?
MPI has two functions designed to answer these 
questions:
mpi_comm_size reports the number of processes
mpi_comm_rank reports the rank, a number between 0 and 
Nproc-1 identifying the calling process



About parallel programming: MPI send/receive 
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We need to supply the details in

And we need to specify:
• How data will be described
• How processes will be identified
• How the receiver will recognize/screen messages
• What it will mean for these operations to complete
• …and what to do after receving&computing is over

Process 0
Send(data)

Process 1
Receive(data)



About parallel programming: How does it work? 
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• Data transfer requires synchronization
• Requires cooperation between sender and receiver
• …and this is not always apparent in the source code



About parallel programming: Main tasks are simple 
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(well… somehow)
• A parallel code uses mainly six basic MPI functions

used as call MPI_...(…)

MPI_INIT …start mpi procedure
MPI_FINALIZE …end mpi procedure
MPI_COMM_SIZE …determines the size of the group  

associated with a communicator
MPI_COMM_RANK …determines the rank of the calling 

process in the communicator
MPI_SEND …send
MPI_RECV …receive

• Point-to-point (send/recv) is the only way…



About parallel programming: Introduciton to 
collective operations in MPI 
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• Collective operations are called by all processes in a 
communicator

• MPI_BCAST distributes data  from one process (the parent or 
root) to all others in a communicator

• MPI_REDUCE combines data  from all processes in a 
communicator and returns it to one process (the parent or root)

• SEND/RECEIVE can be replaced by BCAST/REDUCE
improving simplicity and efficiency

• All-to-All (any process communicating with any other one) is 
the heaviest task/workload (of course)



About GPUs and code(s) performance

Looking back at early ‘90s:

Fastest machines were CRAY's...
– Vector machine
– Fast memory streams vectors through a very fast
Processor

...and Connection Machines
– Massively parallel architecture
– Very many slower processors each compute on one
element of the result vector.
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CPU ???   GPU ???
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iP-rocess iP-ut in order



About GPUs and code(s) performance

The vector machine strikes back

vector computer               CM                  GPU Nvidia®

A modern GPU is both a vector machine and a massively 
parallel architecture
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About GPUs and code(s) performance

Pros                                 Cons
_____________________________________________
Fast                                  Specialized
Cheap                              Hard to program (efficiently)
Low-power                      Bandwidth problems
Compact                          Rapidly changing (need for

continuous recoding)

Future is streaming anyway?.... Or not?
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Example of GPU programming on NVIDIA 
• GeForce Quadro, Tesla, Mobile : Tegra, Cloud : GeForce GRID VGX
• 2011–Tegra2,  2012-Tegra3, 2013-Tegra4, 2014-TegraK1 Logan, 2015-Parker
• GPU generation: 2008-Tesla, 2010-Fermi, 2012-Kepler, 2014-Maxwell (next: Volta)

Doubling the computing power at each new generation. 
Purpose: Power efficiency, Ease of programming, large application coverage. 
More calculations per consumed Watt

Programming: NVIDIA @ Portland (PGI-Fortan & C++)
Good points: vector-matrix & matrix-matrix operations, pointers handling
Weak points: FFT and communication speed for massively parallel applications
OpenACC: Generalization of OpenMP. (Not sure if better than OMP 4.0)

OpenMP example                              OpenACC example
!$acc data copy(A), create(Anew)

!$OMP parallel do private (i,j)                  !$acc kernels
do i=1,…                                                        do i=1,…
do j=1,…                                                          do j=…
Anew(i,j)=…A(i,j)                                             Anew(i,j)=…A(i,j)

enddo enddo
enddo enddo
!$OMP parallel end                                   !$acc end kernels

!$acc end data
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Which calculations? 
• Standard example: Schrödinger/Kohn-Sham/Dirac/whatever 

quantum mechanics formulation (non t-dependent)

• Simple basis set case: orbitals in plane waves

yi(x) = SG ci(G) eiGx

• G are the reciprocal space vectors. The Hilbert space spanned 
by PWs is truncated to a suitable cut-off Ecut such that 

G2/2 < Ecut
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R space    a G space

E2
cut > E1

cut

Plane wave expansion: yi(x) = SG ci(G) eiGx

For each electron i=1,…,N , G=1,…,M are the reciprocal space 
vectors. The Hilbert space spanned by PWs is truncated to a 
cut-off Gcut

2/2 < Ecut

E1
cut
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R space a G space

Plane wave expansion: yi(x) = SG ci(G) eiGx
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Typical calculation with ~500 atoms: Nx x Ny x Nz = 500000
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G space                         R space
ci(G) yi(x)

SG ci(G) G2 {Ek}
VNL(G) {ENL}
r(G)

N*FFT

FFT r (x)

Vloc (G) + VH(G)  {Eloc+EH}
= VLH(G) 

Vxc(x)   {Exc}
+ VLH(x)
= VLOC(x);
VLOC(x)yi(x)

FFT

N*FFT
VLOC(G)ci(x)

+ VNL(G) + SG ci(G) G2
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Practical implementation
• G=1,…,M (loop on reciprocal vectors) distributed in a 

parallel processing in bunches of M/(nproc) or via 
MPI or hybrid MPI+OMP

• i =1,…,N (loop on electrons) distributed (MPI / OMP)
• k = 1,…,Nkpt (loop on k-points) distributed (MPI / 

OMP)
• I = 1,…,NAtoms (loop on atoms) distributed (MPI / 

OMP), particularly useful in QM/MM simulations 
where MM ~ O(N)

• Parallel FFT: your own or libraries, e.g. fftw3 as in 
http://www.fftw.org/
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Performance on M of threads             Performance on IBM BG/Q

MPI workload distribution for CPMD

608 atoms                                                  1008 atoms
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Ideal case

2048 cores (512 MPI x 4 OMP)

336 atoms

1008 atoms

Scaling for a full QM system (b-cellulose) @ IBM-BG/Q
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1008 atoms
3072 electrons
450124 PWs

Ideal case

Scaling for a full QM system (b-cellulose) @ IBM-BG/Q
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Thank you for your attention
ご清聴ありがとうございます

Vielen Dank für Ihre Aufmerksamkeit 
Merci de votre attention

Grazie della vostra attenzione
Ευχαριστώ για την προσοχή σας
관심에감사드립니다
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