
1

Introduction to Numerical Simulations and
High Performance Computing: From

Materials Science to Biochemistry

Mauro Boero

Institut de Physique et Chimie des Matériaux de Strasbourg
University of Strasbourg - CNRS, F-67034 Strasbourg, France

and

@ Dept. of Applied Physics, The University of Tokyo,
7-3-1 Hongo, Tokyo 113-8656, Japan

2

Part 7:
Brief overview of HPC architectures

and parallel programming

Outline

• High Performance Computing (HPC): Massively
parallel machines and CPU/GPU achitectures

• Parallelization strategies: MPI/OMP & Co.
• Practical example of implementation: numerical

scheme, basis set, direct space and Fourier transform
& Co.

• Example performance and speedup (QM & QM/MM)

3

4

High Performance Computing (HPC) nowadays

5

High Performance Computing (HPC): Brief History

• John von Neumann (Manhattan Project) programmed the first algorithm
on ENIAC (Electronic Numerical Integrator And Computer)
• ENIAC was designed to calculate artillery firing tables for US Army’s
ballistic research (1946)

Nowadays
ENIAC@IPCMS

6

High Performance Computing(HPC): Brief History

Example: of modern Machines:

HPC @ IPCMS (ENIAC)
• 896 Cores network architecture with
Infiniband interconnection
• Front Quad Xeon 8 GB RMA + 64
dual processor compute nodes Quad
Xeon - 32 GB RAM
• Scalable network infrastructure to
Gigabit Ethernet, storage > 20 TB

Equip@Meso
• Hybdrid CPU/GPU NEC

HPC1812Rd-2/GPS12G4Rd-2
• 145 nodes = 2320 Computing cores

(Mellanox Infiniband)

7

Other available HPC resources in France:

- IBM Blue Gene / Q &
IBM x3750 @

- BULL Cluster @

- CURIE cluster @

8

9

Earth Simulator & K-Computer (Japan)

About parallel programming:

MPI (Message Passing Interface)
https://www.open-mpi.org/
https://www.mpich.org/
https://software.intel.com/en-us/intel-mpi-library

and

OpenMP (http://openmp.org/)

are the major tools to parallelize a computer code

10

ES system configuration
Parallel vector supercomputer system with 640 processor nodes
(PNs) connected by 640x640 single-stage crossbar switches.
Each PN is a system with a shared memory, consisting of
- 8 vector-type arithmetic processors (APs): total=5120 AP
- a 16-GB main memory system (MS)
- a remote access control unit (RCU)
- an I/O processor.

MPI

11

ES system : single processor node (PN)
•The overall MS is divided into 2048 banks
•The sequence of bank numbers corresponds to increasing
addresses of locations in memory.

OMP

12

About parallel programming:

13

What is MPI ?
• Is a message-passing interface (library) specification

(basically calls in a computer code)
• Is NOT a programming language or computer specification
• Is NOT a specific implementation or (commercial) product
• Is a package/wrapper to be used within a specific language
• Is intended for parallel computers, clusters and

heterogeneous networks
• Is designed to provide access to advanced parallel hardware

for
- programmers/developers of codes AND languages
- end users
- library writers

About parallel programming:

14

Why MPI ?

• MPI provides a “not-so-hard-to-handle” efficient and
portable way to parallelize programs

• It has been explicitly designed to enable libraries…
• …which may eliminate the actual need for users to

learn MPI
• Yet, it is better to learn MPI if you are a developer

(or you are doomed/fired)

About parallel programming: the Environment

15

Two major questions arise immediately in a parallel
code:
• How many processes (cores/CPUs) participate to

this computation?
• …and on which one am I (now)?
MPI has two functions designed to answer these
questions:
mpi_comm_size reports the number of processes
mpi_comm_rank reports the rank, a number between 0 and
Nproc-1 identifying the calling process

About parallel programming: MPI send/receive

16

We need to supply the details in

And we need to specify:
• How data will be described
• How processes will be identified
• How the receiver will recognize/screen messages
• What it will mean for these operations to complete
• …and what to do after receving&computing is over

Process 0
Send(data)

Process 1
Receive(data)

About parallel programming: How does it work?

17

• Data transfer requires synchronization
• Requires cooperation between sender and receiver
• …and this is not always apparent in the source code

About parallel programming: Main tasks are simple

18

(well… somehow)
• A parallel code uses mainly six basic MPI functions

used as call MPI_...(…)

MPI_INIT …start mpi procedure
MPI_FINALIZE …end mpi procedure
MPI_COMM_SIZE …determines the size of the group

associated with a communicator
MPI_COMM_RANK …determines the rank of the calling

process in the communicator
MPI_SEND …send
MPI_RECV …receive

• Point-to-point (send/recv) is the only way…

About parallel programming: Introduciton to
collective operations in MPI

19

• Collective operations are called by all processes in a
communicator

• MPI_BCAST distributes data from one process (the parent or
root) to all others in a communicator

• MPI_REDUCE combines data from all processes in a
communicator and returns it to one process (the parent or root)

• SEND/RECEIVE can be replaced by BCAST/REDUCE
improving simplicity and efficiency

• All-to-All (any process communicating with any other one) is
the heaviest task/workload (of course)

About GPUs and code(s) performance

Looking back at early ‘90s:

Fastest machines were CRAY's...
– Vector machine
– Fast memory streams vectors through a very fast
Processor

...and Connection Machines
– Massively parallel architecture
– Very many slower processors each compute on one
element of the result vector.

20

CPU ??? GPU ???

21

iP-rocess iP-ut in order

About GPUs and code(s) performance

The vector machine strikes back

vector computer CM GPU Nvidia®

A modern GPU is both a vector machine and a massively
parallel architecture

22

About GPUs and code(s) performance

Pros Cons

Fast Specialized
Cheap Hard to program (efficiently)
Low-power Bandwidth problems
Compact Rapidly changing (need for

continuous recoding)

Future is streaming anyway?.... Or not?

23

Example of GPU programming on NVIDIA
• GeForce Quadro, Tesla, Mobile : Tegra, Cloud : GeForce GRID VGX
• 2011–Tegra2, 2012-Tegra3, 2013-Tegra4, 2014-TegraK1 Logan, 2015-Parker
• GPU generation: 2008-Tesla, 2010-Fermi, 2012-Kepler, 2014-Maxwell (next: Volta)

Doubling the computing power at each new generation.
Purpose: Power efficiency, Ease of programming, large application coverage.
More calculations per consumed Watt

Programming: NVIDIA @ Portland (PGI-Fortan & C++)
Good points: vector-matrix & matrix-matrix operations, pointers handling
Weak points: FFT and communication speed for massively parallel applications
OpenACC: Generalization of OpenMP. (Not sure if better than OMP 4.0)

OpenMP example OpenACC example
!$acc data copy(A), create(Anew)

!$OMP parallel do private (i,j) !$acc kernels
do i=1,… do i=1,…
do j=1,… do j=…
Anew(i,j)=…A(i,j) Anew(i,j)=…A(i,j)

enddo enddo
enddo enddo
!$OMP parallel end !$acc end kernels

!$acc end data

24

Which calculations?
• Standard example: Schrödinger/Kohn-Sham/Dirac/whatever

quantum mechanics formulation (non t-dependent)

• Simple basis set case: orbitals in plane waves

yi(x) = SG ci(G) eiGx

• G are the reciprocal space vectors. The Hilbert space spanned
by PWs is truncated to a suitable cut-off Ecut such that

G2/2 < Ecut

25

   xx iii Eˆ yy H

R space a G space

E2
cut > E1

cut

Plane wave expansion: yi(x) = SG ci(G) eiGx

For each electron i=1,…,N , G=1,…,M are the reciprocal space
vectors. The Hilbert space spanned by PWs is truncated to a
cut-off Gcut

2/2 < Ecut

E1
cut

26

R space a G space

Plane wave expansion: yi(x) = SG ci(G) eiGx

 

 
 

 

.c.c

N,N,N
...
...

,,
,,

zyxi

i

i

i 

























y

y
y

y
001
000

x  

 
 

 

.c.c

NG,NG,NGc
...
...

,,c
,,c

c

zyxi

i

i

i 

























001
000

g

Typical calculation with ~500 atoms: Nx x Ny x Nz = 500000

27

G space R space
ci(G) yi(x)

SG ci(G) G2 {Ek}
VNL(G) {ENL}
r(G)

N*FFT

FFT r (x)

Vloc (G) + VH(G) {Eloc+EH}
= VLH(G)

Vxc(x) {Exc}
+ VLH(x)
= VLOC(x);
VLOC(x)yi(x)

FFT

N*FFT
VLOC(G)ci(x)

+ VNL(G) + SG ci(G) G2

 ii
i

HcH
c

E y

 ˆ)(ˆ

)(
G

G


28

Practical implementation
• G=1,…,M (loop on reciprocal vectors) distributed in a

parallel processing in bunches of M/(nproc) or via
MPI or hybrid MPI+OMP

• i =1,…,N (loop on electrons) distributed (MPI / OMP)
• k = 1,…,Nkpt (loop on k-points) distributed (MPI /

OMP)
• I = 1,…,NAtoms (loop on atoms) distributed (MPI /

OMP), particularly useful in QM/MM simulations
where MM ~ O(N)

• Parallel FFT: your own or libraries, e.g. fftw3 as in
http://www.fftw.org/

29

Performance on M of threads Performance on IBM BG/Q

MPI workload distribution for CPMD

608 atoms 1008 atoms

30

Ideal case

2048 cores (512 MPI x 4 OMP)

336 atoms

1008 atoms

Scaling for a full QM system (b-cellulose) @ IBM-BG/Q

31

1008 atoms
3072 electrons
450124 PWs

Ideal case

Scaling for a full QM system (b-cellulose) @ IBM-BG/Q

32

Thank you for your attention
ご清聴ありがとうございます

Vielen Dank für Ihre Aufmerksamkeit
Merci de votre attention

Grazie della vostra attenzione
Ευχαριστώ για την προσοχή σας
관심에감사드립니다

33

