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Part 4: 
Advanced Methods I

Reactive schemes
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An example of dynamical chemical bond breaking and 
formation: first principles MD of the diffusion of protons 
in water (electronic structure becomes important…)

H3O+

H3O+

H3O+

H3O+

H3O+
The presence of a hydrogen bond network 
linking water molecules is crucial to propagation

R. Pomès and B. Roux,  J. Phys. Chem. 100, 2519 (1996)
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A proton in 
normal liquid 

water: 
r = 1.0 g/cm3

T = 300 K

simulation time 
displayed: 0.6 ps

total simulation
time: 19.1 ps
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The excess proton makes a continuous switch between
Eigen H9O4

+ complex and Zundel H5O2
+ shared proton 

structure, forming and breaking bonds

Eigen Zundel

H-bond     s-bond



6

Proton diffusion: a couple of observations
• A simple first principles MD seems to be able to simulate the basic 
chemistry process for a proton diffusion: the Grotthus switching
from a s bond (O-H) to a hydrogen bond (H-bond)
• It seems than that if we can control in some way the temperature 
of the water, we can speed up (heating) or slow down (cooling) such 
a process 
[Note: this is the idea behind the use of supercritial water]
• Indeed, for simple chemical reactions that occur with little (few 
kBT) or no energy barrier, thermal fluctuations are enough to 
activate the process
• Yet, kBT = 26 meV = 0.60 kcal/mol at T = 300 K 

…so let’s try to heat up our system from 300 K to 673 K*

* Typical supercritical temperature
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High temperature: 
r = 1.0 g/cm3

T = 673 K

simulation time 
displayed: 0.6 ps
(total simulation
time: 20.0 ps)

the H+ diffusion 
becomes faster
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Theoretical diffusion coefficients computed from the velocity-velocity
autocorrelation function. D and from the mean square displacement, DMSD.
The experimental proton diffusion coefficient is Dexp, diffusion and Dself is
the water self-diffusion coefficient.

[a] R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths,
London, 1959.

However this is just a lucky case… in general a chemical reaction requires
the overcoming of a much higher energy barrier.

r (g cm-3) T (K) D (cm2/s) DMSD

(cm2/s)
Dexp

(cm2/s)
Dself

(cm2/s)
1.0 300 13.0 x 10-5 15.0 x 10-5 9.3 x 10-5

[a]
2.5 x 10-5

1.0 673 70.0 x 10-5 62.0 x 10-5 33.0 x 10-5
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In general, can we use first principles or classical MD 
to explore long range (time, space) phenomena ?

• Unfortunately the general answer is NO !
• Classical MD or O(N) method can help in extending the 

length scale
• …but classical (~10 ns) and quantum (~10 ps) MD are 

insufficient for most of the phenomena
• …and longer length scale often goes together with longer 

time scale (we see very little in few ps simulations of 
billions of atoms – P. Vashishta, CSW 2005)

• Most of the relevant phenomena occur on a long time scale 
and involve extended portions of the system under study: 
chemical reactions, diffusions, phase transitions, folding, 
nucleation, etc…
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Unsolved Problems in Total Energy 
Surface Approaches

•Intermediate states at equivalent 
saddle points

•Complex and rough energy surface

•Multiple equivalent minima

•Equivalent reaction paths

•Unforeseen  reaction products © by David Chandler
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From reactants A to products B: we have to 
climb the mountain minimizing the time

• A general chemical 
reaction starts from 
reactants A and goes into 
products B

• The system spends most of 
the time in A and/or in B

• …but in between, for a 
short time, a barrier is 
overcome and atomic and 
electronic modifications 
occur

• Time scale:

D

Tk
F

mol
Be

*

~  D~*F
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How to simulate a chemical reaction ?

A + B

AB

• The reaction A+B g AB passes across a rare event 
(transition state) that is difficult to see

• CP molecular dynamics time scale is of the order of some 
tens of ps and classical simulations are of the order of few 
ns, but still insufficient… we cannot wait forever…
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xinit xfinal

A+B

AB

Select the reaction coordinate x to be sampled, e.g. the
interatomic distance x = |RA – RB|
Add to the CP lagrangean LCP the holonomic constraint

LCPg LCP + lx (x-x0)      (lx = Lagrange multiplier)
Compute the ensemble (time) average < lx >

E(x)

x

Blue Moon ensemble theory
(M. Sprik and G. Ciccotti J. Chem. Phys. 109, 7737 (1998))

why ?
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Blue Moon ensemble theory
From the standard definition of free energy

F = -kBT ln <exp{-[H CP + lx(x-x0)]/kBT}>
using exp(x) ~ 1+x+O(x2) and ln(1+x) ~ x - O(x2) we get 

TkTkTkF BB
CP

B /)(/H1ln 0xxl x 

)(H 00 xxlxxl xx  CP

0H CP

  xxxxxxxxx  00000 ,0

)(H/)(H 00 xxlxxl xx  CP
B

CP
B TkTk

but because HCP is a constant of motion

and

because x0 is the average value of x (and a constant !)
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Blue Moon ensemble theory

 …so the variation of the free energy become simply

 If we now integrate the average constraint force along the 
sampled reaction path between xinit and xfinal , we finally arrive 
at the following expression for the free energy difference 
between initial (reactant) and final (product) states

xlx
x

 x




FF
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The general evaluation of the average of the Lagrange 
multiplier is given by

Blue Moon ensemble theory





xlx

F
hence



Example 1: Divalent alkali metal cations in 
water – Mg2+, Ca2+

17



Blue Moon constraint = Coordination number of cation

Mg: Radial distribution function and
related coordination number S(r)

Ca: Radial distribution function and
related coordination number S(r)

n = 10, m = 16 in both cases 18



Mg2+ free energy profile and main solvation structures

19



Ca2+ free energy profile and main solvation structures

20



Comparison of the simulations results with experiments

Mg2+

Ca2+

a Experiments from H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993) – X-ray
N. A. Hewish et al. Nature 297, 138 (1982) – isotopic substitution

21



Outcome of the simulations

• The structural properties of Mg2+ and Ca2+ aqueous 
solutions are well described by our simple model. 

• First principles simulations successfully capture the
different hydration behavior as observed in experiments. 

• The solvation shell of Mg2+ is pretty stable in a 6-fold 
structure, whereas Ca2+ is characterized by a higher 
flexibility accounting for the experimental evidence

Related Publications: 
M.B., T. Ikeda, E. Ito, K. Terakura, J. Am. Chem. Soc. 128, 16798 (2006)
T. Ikeda, M. B., K. Terakura, J. Chem. Phys. 126, 034501 (2007)
T. Ikeda, M. B., K. Terakura, J. Chem. Phys. 127, 074503 (2007)
M. B., J. M. Park, T. Hagiwara, M.Tateno, J. Phys. Cond. Mat. 19, 365217 (2007)

22



• The Ziegler-Natta (ZN) catalysis is the most
important industrial process in the production of
polyolefins with high degree of stereoselectivity

• The reaction occurs at room temperature with a
very high reaction rate and low amount of catalyst

• Experimental probes fail in recovering the
microscopic picture due to the very fast reaction
and the low percentage of active sites

• Quantum dynamical simulations can be a viable
tool to study active sites and reaction pathways

Example 2: catalysis of ethylene.. how 
polyethylene is produced

23



• Annual Worldwide Production (2008)1 : 45 million tons 
• Share of consumption by region (2007)2 :

China — 23%                                            North America — 18% 
Western Europe — 18%                            Asia/Pacific — 16% 
Middle East/Africa — 9%                         Japan — 11% 
Central/South America — 5% 

• Key Products: Packaging, textiles, fibers, automotive components, cups, 
cutlery, housewares, appliances, electronic components, carpeting, photo 
and graphic arts products. 

• Top 10 world producers by 2008 market share (in descending 
order)3 : LyondellBasell, Sinopec Group, Saudi Basic Industries Corp. 
(SABIC), PetroChina Group, Reliance Industries, ExxonMobil, Borealis, 
Total PC, Ineos, Formosa Plastics 

1 Source: ChemSystems
2 Source: Townsend Solutions
3 Source: Chemical Market Associates, Inc. (CMAI) 24



Polyolefins items produced routinely in 
industries and laboratories

25



First insertion of ethylene
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Main phases of the insertion

The p-complex (left), the transition state (center) 
and the final product (right)

Reaction coordinate: x = |C1-Ca|
The reaction is a-agostic assisted
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Ethylene polymerization from mononuclear Ti

• ELF of the main steps of the ethylene insertion: the p-
complex (right), the transition state (center) and the final 
product (right). ELF=0: blue, ELF=1: red

• ELF is projected on the plane containing the C1 and C2
carbon atoms (grey) of the ethylene and Ti (purple).

28



29

Catalysis of polyethylene: energetics 

Experiment:
Barrier = 6-12 kcal/mol
Product = -22 kcal/mol

Free energy
(balls)

Total energy
(diamonds)
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…how a polymer chain is produced
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An example of application: catalysis of 
ethylene.. how polyethylene is produced

Formation of a 
complex on Ti 
catalytic site

Transition state at 
DF = 8 kcal/mol

Final product:
insertion of a
new monomer

x



Outcome of the simulations
• Role and relative importance of the MgCl2

active surface (substrate)
• Interaction of Ti species with the support
• The polymerization reaction pathway
• Energetic and efficiency of the reaction

Related publications:
M.B., K. Terakura and M. Parinello, J. Am. Chem. Soc. 120, 2746 (1998)
M.B., M. Parrinello, S. Hüffer and H. Weiss, J. Am. Chem. Soc. 122, 501 (2000)
M.B., M. Parrinello, H. Weiss and S. Hüffer,  J. Phys. Chem. A 105, 5096 (2001)

32
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Sampling the reaction path via 
metadynamics

   MtN  ,...,,..., 101 RR

1) The atomic and electronic configuration of our initial system is 
given by a set of variables

2) …and we assume that some known functions of a subset of 
them (collective variables) are necessary and sufficient to 
describe the process we are interested in

  MNns iI ,,...,1;  R
3) …so that the FES is a function of these changing variables

  ntstF ,...,1)()()(  sss
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Collective variable(s) ?

• Distances
• Angles (bending, torsion, out-of-plane, 

etc.)
• Coordination numbers
• Spin density
• Local electric fields
• number of n-fold rings
• Lattice vectors
• Energy
• etc…
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• For reconstructing F(s) in many dimensions as a function of one or more 
collective variables. 

• Used as a tool for escaping local (free energy) minima, i.e. accelerating rare 
events, reconstructing the free energy in the selected interval of reaction 
coordinates (not everywhere !).

[1] A. Laio, A. and M. Parrinello, Proc. Nat. Acad. Sci. USA 99, 12562 (2002) 
[2] M. Iannuzzi, A. Laio, M. Parrinello, Phys. Rev. Lett. 90, 238302 (2003)

Metadynamics in few words:
• Artificial dynamics in the space of a few collective variables [1]
• The CPMD dynamics is biased by a history-dependent potential 
constructed as a sum of Gaussians [2]. 
• The history dependent potential compensates, step after step, the underlying 
free energy surface [3,4].
[1] I. Kevrekidis et al., Comput. Chem. Eng. (2002)
[2] T. Huber et al., J. Comput. (1994)
[3] F. Wang and D. Landau, Phys. Rev. Lett. (2001)
[4] E. Darve and A. Pohorille, J. Chem. Phys. (2001)

What is it used for ?
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Metadynamics: how does it work ?

•Put a “small” Gaussian
•The dynamics brings you to the closest local minimum 
of F(s) plus the sum of all the Gaussians

F(s)

s

Laio & Parrinello, PNAS 2002
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Summarizing:

• In the one dimensional example shown, the system freely 
moves in a potential well (driven by MD). 
• Adding a penalty potential in the region that has been already 
explored forces the system to move out of that region, 
• …but always choosing the minimum energy path, i.e. the 
most natural path that brings it out of the well. 
• Providing a properly shaped penalty potential, the dynamics 
is guaranteed to be smooth
• Therefore the systems explores the whole well, until it finds 
the lowest barrier to escape.



t0

t1 t2

脱出

F(s)

F(s)+V(s, t)

ss(t0)

t3

∙∙∙
∙∙

Set up collective variables {sa} 
and parameters Ma, ka, Ds, A

Perform few MD steps 
under harmonic restraint

Add a new Gaussian 

Update mean forces on {s} 

Update {s} 

The component of the force coming from the gaussians subtracts
from the “true” force the probability to visit again the same place

38
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A simple example: single collective variable (one walker)
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How to plug all this in CPMD ?
We simply write a (further) extended Lagrangean 

including the new degrees of freedom

History-dependent 
potential

Fictitious kinetic energy

Restrain potential: coupling 
fast and slow variables
√(kα/Mα) « ωI
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Equations of motion for the collective variables

We use (again) the velocity Verlet algorithm to solve the EOM

and we have two new contributions to the force
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• The fictitious kinetic energy             represents the collective 
variables evolution (find the next Gaussian center) 

• If we initially set V(sa,t)=0, we get a harmonic oscillator

that makes the system wandering around the minimum of 
F(sa) without escaping. This gives us an idea of the range (and 
shape) of the local minimum

2
2
1

 sM 

])([)( 0
 stsktsM 

~ka(sa-sa0)

sa0

Dsa

F(sa)

sa
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The dynamics of the sa variables is driven by the force

  ),()()( 0 tsV
s

stsktf 


 




We want continuous (integrable) lagrangean variables, in the spirit
of the Car-Parrinello dynamics. Thus V(sa,t) is chosen as
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The prefactor W(t’) has the dimensions of an energy and must be
chosen carefully in order to adapt V(s,t) to the FES
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The discrete form of V(s,t) implemented in CPMD is
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where the Dirac d has been expressed in the approximate
Gaussian form

  ttxx D
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and the discrete time step Dt must be such that
1DD


 s
CPMD tt CPMD time step Highest oscillation

frequency of sa
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About the history dependent penalty potential

The Ns dimensional Gaussian :

Filling efficiently 
~ well size

Orthogonal to the trajectory

Adaptive to the underlying FESLocalized on already visited configurations

Continuous trajectories in Σ
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What is the meaning of all this ?

It is a Ns-dimensional gaussian tube having the sa(t) trajectory
as an axis and around which we accumulate gaussians

 ts

  ttss DD ||

 parameterinputsD

In V(s,t) the slices from t1 to tNstep are accumulated as a
sum of gaussian functions and the slices have a thickness Ds||

t1

t2
t3 t4

tNstep
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FES reconstruction: what V(s,t) is used for

When the (meta)dynamics is over and the walker has explored 
all the portion of the {s} phase space available, we have 
completed our job (at large t) and filled all the local minima, 
then the shape  of V(s,t) is similar to the FES apart from a sign 
and an arbitrary additive constant

.)(),(lim constFtV
t




ss

In practice: the number of gaussians required to fill a minimum
is proportional to (1/ds)n (n = dimensionality of the problem) and

5.0/
2/122/1  s feW



FES reconstruction: Convergence issues
• The underlying potential V(s,t) does not converge actually to
the free energy (+ constant) , but oscillates around it. This has 
two consequences.
1) The bias potential overfills the underlying FES and pushes 

the system toward high energy regions of the CVs space. 
2) It is not trivial to decide when to stop a simulation.
•Thumb rule: Metadynamics can be stopped as soon as the 
system exits from the (initial) minimum. If one is interested in 
reconstructing an FES, it should be stopped when the motion of 
the CVs becomes diffusive in the region of interest.
Warning: Identifying a set of CVs appropriate for describing
•complex processes is far from trivial.

48



FES reconstruction: Convergence issues

• The FES estimation by continuing the simulation to allow the 
system to pursue its (meta)dynamics for a few passages back 
and forth from the reactants side to the products one is a 
practical way of smoothing the V(s,t) oscillations
• When all the minima of the FES are saturated, the system can 
diffuse in a nearly free manner from reactants to product. Then

49
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FES reconstruction: Convergence issues

• Another workaround to cure the V(s,t) oscillations is the so 
called well-tempered metadynamics
• The bias deposition rate decreases over simulation time by the 
use of the expression

where w=W/tg , DT is an input parameter having temperature 
dimensions and N(s,t) is the histogram of s collected during the 
simulation. (tg=deposition stride of Gaussians)

50
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FES reconstruction: Convergence issues
• In practice, the Gaussian amplitude W is rescaled as

and the bias deposition rate decreases as 1/t
• The bias potential converges then to

• DT→0 : Standard MD      DT→  : Standard metadynamics

(Ref: WIREs vol. 1, p. 826-843 (2011))
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FES reconstruction: Focusing on relevant CVs

• In some (many) cases several s(t) can be selected, even 
redundant ones. 

• This is not hindering or jeopardizing the FES exploration, 
provided that in the set {s(t)} the relevant CVs exist

• Once that F(s1,…,sN) has been obtained, the non-relevant CVs 
can be integrated out as

52
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FES reconstruction: Focusing on relevant CVs 
… but with a warning 

• Minima Topology 
• Energy barriers
• Connectivity

can turn out wrong if a 
non-redundant CV is 
missing

53

s1

s1

s2

∫ds1

1         3    2       4
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Note that:
1. The parameter t in sa(t) is not a real time, but 

rather an index labeling the configurations that 
explore the FES

2. Dsa|| = sa(t+t) - sa(t) can be arbitrarily large 
(coarse-grained metadynamics) and gives the 
accuracy in the sampling of the FES along the 
trajectory described by the sa(t) variables

3. The dynamics at each fixed sa is a true dynamics 
used to explore the local portion of FES

4. The FES is smoother than the PES, being 
dependent on a reduced number of variables



55

Some warnings:
• Parameters are system dependent
• The collective variables sa must be identified by 

the user
• …and must be able to discriminate between initial

and final state 
• …and must keep into account all the slow degrees 

of freedom 
• Although the trajectory generated describes the 

most probable reaction pathway, it is not the true 
dynamics
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Note: connection between metadynamics and Blue Moon

In the case of a single collective variable (reaction coordinate), a =1

0),( tsV• Do not update the Gaussians:

• Do not move dynamically s(t):

  ),()(
2
1

2
1 22 tsVssksM I  R

0s

 2)( ss I  Rl

where l = k/2. 
…Then we are back to a Blue Moon formulation.

}update manually



Multiple walkers
Parallel efficiency: the 
processors share only the 
position of the Gaussians 

The accuracy is 
independent on the 
number of walkers 

(but the simulation time 
decreases linearly)
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Unlimited speed up? No way !
There’s an upper limit defined by the system properties and
the metadynamics parameters

58



Example of Metadynamics application: 
NaCl in water

Two minima: Contact ion pair (metastable)
Dissociated

Collective variables:   Electric field on Na+

Electric field on Cl-

Distance Na+ Cl-

59
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Free energy surface

Transition state

Transition state
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CPMD metdynamics: an example of application

Clearing a barrier > 70 kcal/mole

Azulene Naphthalene



(0,0,3) (1,1,2)

(1,0,3) (1,0,1) (1,1,1)

(1,2,2)

L.T. Scott, Acc.Chem.Res., 52 p 15 (1982)
63



A

B

C

D
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The Dynamic Transition State
Shooting with random velocities & free MD

azulene naphthalene

intermediate

4919

~90
~120

65



66

Summarizing
• The method is useful for adiabatic processes (we stay 

always on the same PES)
• The collective variables describing the process are 

known exactly and they must be able to distinguish 
the reactants from the products

• It is applicable in the microcanonical ensemble and it 
makes use of an underlying (faster) dynamics (e.g. 
CPMD)

• It requires an approximate knowledge of the FES, but 
does not require any knowledge about the products

• It does not require unaffordable long simulation times
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An alternative to biasing methods: 
Path searching methods

• Nudged elastic band (H. Jonsson et al, 1998)
• Path search (M. Karplus et al., 1997)
• Path sampling/annealing (D. Chandler et al., 1998)
• Action derived MD (D. Passerone and M. Parrinello (2001))
• String method in collective variables (CVs) L. Maragliano et al., J. 

Chem. Phys. 125, 024106 (2006)
• Free energy path A-to-B (M. Parrinello et al., J. Chem. Phys.  126, 

054103 (2007))
No one of those methods is able to give the real dynamical 
path chosen by the reactants to transform into the products 
and requires previous knowledge of both the reactant and 
the product
See e.g. D. Chandler et al. J. Chem. Phys. 108, 1964 (1998)

J. Phys. Chem. B 103, 3706 (1999)
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What we do need to know:

  01,...,)0(  tNA RRqq
1) The atomic configuration

at the starting point

  tt  tNB RRqq


,...,)( 1
2) The atomic configuration

at the end of the reaction

3) The equations of motion
or the lagrangean )(

2
1),( 2 qVqqqL  



Path minimization
However, in many cases, we simply want to know the barrier 
height and its location for a known reactant and product pair.     

String method in collective variables (CVs) proposed by 
L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006).   

String method + biased sampling  
method →

Minimum free energy 
paths (MFEPs) in some 
selected CVs space

Blue moon ensemble : Path minimization: 
• Applicable to reactions of 
unknown products
• In practice 1 CV only
• Very time-consuming

• Require a priori knowledge of 
products
• Applicable to more than 2 CVs 
• Not time but resource consuming
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Minimum free energy paths
Minimum energy path → (∇V)⊥ = 0  for any point along  the path

E.g. minimum free energy paths for conformers of alanine depeptide molecule 

O N

FES
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(∇V)⊥ = 0



String method ?
More precisely, 

k
jk
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where Pij(α): projector on the plane perpendicular to the path at z(α) 
The string method constructs an evolution equation for a parametrized 
curve (string), which converges to a solution of  Eq. (1) as time evolves.   
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Mean force calculation
The mean force ∇zF(z) and the tensor Mij(z) are given in terms of a
conditional average on s(x) = z = constant. The key is to use the
extended potential rather than the bare V(x):
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Then

Finally, the free energy difference along the string can be computed as 
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(4)
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An example: Stone-Wales defect

Required resources & time: 
• 2 nodes x 24 replicas = 48 nodes in total
• 6 days (including waiting time) @TSUBAME (Japan) 

1.2

2.8
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Input for CPMD

STRING.0, 
STRING.1, …

LATEST_S
TRING

replica.i
np

pmin_1, 
pmin_2, … 

74
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Action-derived MD: Hamilton principle of 
stationary action at fixed boundaries


t

0
))(),(( dttqtqLS 

A: q(0)

B: q(t)

dS

 
t


0

0))(),(( dttqtqLS 

…unfortunately, stationary does NOT mean minimum
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Adding some physics to bound the 
action: energy conservation as a 

constraint

• The constraint is a quadratic form (i.e. positive) 
that sets a boundary to the action

• The parameter l is a Lagrange multiplier which 
has the physical dimensions of 1/E

• The pseudo-hamiltonian is not 
related to L by a linear transformation

note that it is not a Legendre transformaton

 
tt

l
0

2
00
)~())(),((),( dtEHdttqtqLEq 

)(2)(~ 2 qVtqH  

)()( tptq 
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Practical implementation:how to write 
the action in a discrete form
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Practical implementation:how to write 
the action in a discrete form

q(0)=qA=q0

qj qj+1

q(t)=qB=qP

j=0,1,…,P

every physical trajectory conserves the energy, but
not every trajectory that conserves energy is physical
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Practical implementation:
discretize the action without the constraint

D




















D
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0
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1 )(
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j
j

jj qV
qq

S

where D = /P, P = number of discrete points that has 
been chosen to write the integral in terms of a sum

The finite difference algorithm for the velocities can be 
refined (e.g. central differences)
…but S is not bounded and searching for a stationary

(minimum) point is challenging !
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Maximum action?
• If the trajectory is very short

(no inversion in the velocities), 
it can be proven that the 
stationary point is a minimum. 

• Could it be a maximum? NO
•If AB is a physical trajectory,  SAB= 0

•A small portion of AB (with tCD < t1)

makes S minimum
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Saddle points
• For small enough times, the motion can always be approximated by the 

motion of a free particle. In this case the solution (straight line) is a 
minimum.

• Upon time increase, at given instants (conjugate points), negative
eigenvalues may appear in the Hessian of S at the stationary point, and 
the minimum becomes a saddle point… and in long trajectory, several
negative eigenvalues can occur:
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Equations of motions by finite differences
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The “force” Fj (left + right components) has to be 
set to zero on each point of the path chain
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Practical implementation: which problems arise ?
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A set of (coupled) linear equations whose roots
(solutions) depend on the choice of D
Furthermore (as in every MD) we want to compute 

only first derivatives (=forces)
…and we want the solution to be a minimum of S
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Practical implementation:
adding the energy constraint
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The constraint (in discrete form) is added  to impose
the energy conservation
The Lagrange multiplier m (lD) determines how strict 
the energy conservation is
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Practical implementation:
m ? Quadratic constraint ?

Just to simplify, let’s approximate (qj,E0) as
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const. is V(0)+E0+etc…, and

For large ,  is a quartic function of qj with positive
curvature: it has a minimum and the constraint dominates
For small ,  is practically S (stationary point =?) 
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Practical implementation:
m ? Quadratic constraint ?

between           and            there is a value * separating
the two regimes for which  behaves like  

0 

qj


In practice:
For m > m* (do not overdo !)
 has a minimum very close
to the MD Verlet trajectories
given by S (Newtonian e.o.m.)

m determines how
steep is this wall

qmin
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Practical implementation:
minimization of the  functional

The problem now is reduced to the minimization of the 
functional (qj,E0) with respect to qj (and E0 if unknown)
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This sets E0 to the physically relevant values
But the variational qj must not vary at t=0 (A) and t=t (B)
since we must satisfy the request of fixed boundaries
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Practical implementation:
from A to B without a map ? (M. Parrinello, 2001)

If we do not know the road let’s go straight first 
(and pray for the best)

 ABAj qqjqq 
D


t

This is not variational: everything is fixed and known, so
let’s add the variations dqj and write

jjj qqq 
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Practical implementation:
how to vary a path whose two ends are fixed
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What are we writing ?

The oscillations, in a Fourier fashion, around the straight 
path where the amplitudes of the various frequencies al
are our (global) variational variables

A B
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Advantages and disadvantages

Advantages of a Fourier description with respect to a cartesian one
are the smoothness and the possibility of extracting different 
time scales
The disadvantage is that the sparseness of the linear system due

to discretization of Stationary Principle is lost
Continuity and smoothness: the velocity reads

Keeping only a few harmonics is a good starting point
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Practical implementation:
minimizing the  functional

  0, 0 


l

l

a
Ea


 The al variables do not depend

on index j, hence each qj can be
computed in parallel (no recursion)

Using (e.g.) conjugate gradient algorithms only first
derivatives (= forces) are required 

The scaling is linear with q = {R1,…, RN}
(is quadratic with 2nd derivatives !)
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Fourier expansion
– Different timescales for different Fourier components: the 

period is 2t/l

– Minimization of  with m = 0, keeping frozen the slowest 
harmonics, is possible: the Hessian of the action is positive 
definite in the subspace of the fastest harmonics.
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• Maupertuis’ principle: given a fixed total energy E, dynamical 
trajectories are those for which

is stationary.  s is a parameter, not the total time.

After finding the geometrical trajectory, the time intervals can be 
found as:

How to extract the total time
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Minimization algorithms
Simulated annealing
– The Fourier components {al} are given a fictitious mass and 

become dynamical variables in a Verlet integration scheme.
– An initial (CP)MD (on the{al}) on the PES of  is needed to 

equilibrate away from the initial trial trajectory
– During this equilibration step, the fictitious temperature of the 

Fourier components corresponds to an actual temperature of 
the atoms of a few thousand Kelvin.

– The fictitious dynamical system is then cooled through velocity 
scaling until the atoms temperature in the initial and final state 
is close the expected physical conditions. Since a rare event is 
not an equilibrium process, temperature is not a well defined 
thermodynamic quantity along the dynamic trajectory 
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Minimization algorithms
• Conjugate gradient

– Minimize the action (al,E0) with respect to{al}.
– Only first derivatives (=forces) are needed.
– Preconditioning is important. In a free particle case, the 

dependence of the action is of the kind (l* al)
2 . 

Minimization with respect to al /l can  be used as a first 
efficient preconditioning scheme. Other preconditioning 
requires some components of the Hessian (computationally 
very expensive). 

– Powerful, but local: it reaches the nearest minimum, but it 
is often desirable to explore configurational space in a more 
effective way.
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Computational scheme:
Flow chart of the calculation (Interface)

PE: 0 PEs: 0,…,P 
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Implementation in typical codes
• Classical schemes for biological and biochemical systems:

– Interface with ORAC (using CHARMM force field)
– Vergilius is inserted in the code, efficient implementation 

with FFT for calculating the Fourier components 
Communication between Orac and Vergilius is internal (not 
through the NFS)

• Quantum Chemical calculations
– Interface with GAUSSIAN 98 (by D. Aktah @ CSCS)
– Vergilius appended externally to Gaussian, communication 

through NFS
• Density Functional calculation

– Interface with CPMD (Communication through NFS)
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Classical MD
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CPMD
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An example of application: 
changing the order of atoms in a cluster

• LJ 2-dimensional model: a simple example of 
isomerization in a classical context

• A and B are known a priori

A B

1
12

2

3

3
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…when the transition state is not
unique and the PES is complicated…

And this is even not the only path !
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